

Summary
 Audit Firm Guardian

 Prepared By Owen Thurm, Daniel Gelfand, Osman Ozdemir

 Client Firm Baseline

 Final Report Date February 25, 2025

Audit Summary

Baseline engaged Guardian to review the security of their Loops Updates. From the 17th of August to

the 23rd of August, a team of 3 auditors reviewed the source code in scope. All findings have been

recorded in the following report.

Issues Detected Throughout the engagement 6 High/Critical issues were uncovered and promptly

remediated by the Baseline team.

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors,

refer to the complete audit report below.

🔗 Blockchain network: Blast

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/Baseline-Perps 2

https://github.com/guardianaudits
https://github.com/GuardianAudits/Baseline-Perps

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Findings & Resolutions …………..…………………………….……………………… 7

Addendum

Disclaimer …………………………………………………………………..…………..… 29

About Guardian Audits ………………………………..………………………………… 30

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Baseline

Language Solidity

Codebase https://github.com/0xBaseline/baseline-v2

Commit(s) Initial commit: 102c7a3abcd34b3c1f97efd400e3a7af4afbaf6b
Final commit: a20a6625f58e1e54f06ca92d2a4cd5f4d6c40c64

Delivery Date February 25, 2025

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 0 0 0 0 0 0

 ● High 6 0 0 0 0 6

 ● Medium 4 0 0 1 0 3

 ● Low 10 0 0 1 0 9

https://github.com/0xBaseline/baseline-v2

5

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ● Critical ● High ● Medium

Likelihood: Medium ● High ● Medium ● Low

Likelihood: Low ● Medium ● Low ● Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core
. functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected.
. The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is
. notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,
. and the cost of the attack is relatively low compared to the amount gained or the
. disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.

6

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

Findings & Resolutions

7

ID Title Category Severity Status

H-01 Dangerous setFundingRate
Function Logical Error ● High Resolved

H-02 closePosition May Break
Through The Floor Logical Error ● High Resolved

H-03 Crucial Storage Overwritten On
configureDependencies Access Control ● High Resolved

H-04 Loops Vault Decay Invalidates
Solvency Check DoS ● High Resolved

H-05 Trapped Fees In LoopFacility Logical Error ● High Resolved

H-06 Missing Blast Configurations Best Practices ● High Resolved

M-01 MarketMaking Ignores Loops
Capacity Logical Error ● Medium Resolved

M-03 Vault Position Not Sum Of User
Positions DoS ● Medium Resolved

M-04 Slide Causes Anchor To
Disappear Warning ● Medium Acknowledged

M-05 Incorrect Virtual Reserves
Accounting Validation ● Medium Resolved

L-01 Unnecessary tradingInFloor Case Optimization ● Low Resolved

L-02 Lacking Use Of Tick Spacing
Constant Best Practices ● Low Resolved

L-03 Anchor Can Exceed Defined
Width Documentation ● Low Acknowledged

Findings & Resolutions

8

ID Title Category Severity Status

L-04 Anchor Ticks Crossed In Drop DoS ● Low Resolved

L-05 Position Can Increase Without
Debt Logical Error ● Low Resolved

L-06 Typo Typo ● Low Resolved

L-07 Zero Transfer DoS DoS ● Low Resolved

L-08 Unexpected Deployment
Behavior Configuration ● Low Resolved

L-09 Infinite Slide Glitch Warning ● Low Resolved

L-10 Unsafe Casting Casting ● Low Resolved

H-01 | Dangerous setFundingRate Function

Description

The setFundingRate function allows a trusted address to assign the funding rate for the vault, however in
almost any circumstance where the fundingRate is updated it will invalidate the funding accounting of the
vault.

For example:
• fundingRate is 10% per year
• Position A is opened at year 0 with X collateral
• Position B is opened at year 1, with X collateral
• The vault experiences decay for 1 year, collateral: X * 1/e^0.1 = X * 1/1.105 and then gains X collateral
• Vault collateral is now X * (1 + 1/1.105) = 1.905X
• The funding rate is set to 5% per year
• Position A is closed at year 2, the position experiences decay for 2 years at a rate of 5% per year, collateral:
X * 1/e^0.1 = X * 1/1.105 = 0.905X
• The vault experiences decay for 1 year at 5%, collateral: 1.905X * 1/e^0.05 = 1.905X * 1/1.051 = 1.813X
• Position A’s collateral is now removed from the vault, collateral left is 1.813X - 0.905X = 0.908
• Position B is closed at year 2, the position experiences decay for 1 year at a rate of 5%, collateral: X *
1/e^0.05 = X * 1/1.051 = 0.951X
• Position B’s collateral is attempted to be removed from the vault, but the vault only has 0.908X collateral
left so the position cannot be fully closed!

The core issue is that every position must be updated to agree with the decay experienced by the vault, if the
rate changes then every position must be updated along with the vault to decay at that time with the
previous rate.

Recommendation

Updating every position to update the rate is not feasible in an EVM environment, consider restructuring the
decay to rely on a single fundingDecayAcc which accumulates for every position in the vault, similar to a
rewardsPerShare model.

Every position can be stamped with a lastFundingDecayAcc and the decay can be measured as the
difference between the latestFundingDecayAcc() - position.lastFundingDecayAcc. Then the setFundingRate
function can simply update the lastFundingDecayAcc using the previous rate before assigning the new rate.

Resolution

Baseline Team: The issue was resolved in commit.

9

Category Severity Location Status

Logical Error ● High Loops.v1.sol: 190 Resolved

https://github.com/0xBaseline/baseline-v2/blob/8950018baec27d6497fba409cb361a596535447d/src/modules/LOOPS.v1.sol

H-02 | closePosition May Break Through The Floor

Description

The closePosition function swaps bAssets for reserves before adding reserves back to the floor
position, therefore it is possible for the bAsset sell to break through the floor tick and invalidate BLV.

Recommendation

At the end of closePosition revert if _tradingInFloor is true, similar to in _deleverage.

Resolution

Baseline Team: The issue was resolved in commit.

10

Category Severity Location Status

Logical Error ● High LoopFacility.sol: 159 Resolved

https://github.com/0xBaseline/baseline-v2/blob/8950018baec27d6497fba409cb361a596535447d/src/policies/LoopFacility.sol#L195

H-03 | Crucial Storage Overwritten On configureDependencies

Description

In the configureDependencies function the sweepTick, slideTick, and lastDropTimestamp are
assigned to their initial values. However there is no access control that prevents the
configureDependencies function from being called again.

Recommendation

Consider only assigning these values on the first call to configureDependencies, and if necessary
include a separate trusted function to re-assign the values.

Resolution

Baseline Team: The issue was resolved in commit.

11

Category Severity Location Status

Access Control ● High MarketMaking.sol: 154-157 Resolved

https://github.com/0xBaseline/baseline-v2/blob/8950018baec27d6497fba409cb361a596535447d/src/policies/MarketMaking.sol#L131

H-04 | Loops Vault Decay Invalidates Solvency Check

Description

The Loops vault decays the debt of every loop position over time and this decay is reported by the
totalDebt, however the totalDebt function does not reduce the total circulating supply corresponding
to the decay of the total position collaterals.

As a result the decay will invalidate the solvency check and DoS all functionality until funding has
been charged.

Recommendation

Charge funding before completing every action in the system that relies on the solvency check, or
consider accounting for the circulating supply that would decrease from the decay in the solvency
check.

Resolution

Baseline Team: The issue was resolved in commit.

12

Category Severity Location Status

DoS ● High Global Resolved

PoC

https://github.com/0xBaseline/baseline-v2/blob/8950018baec27d6497fba409cb361a596535447d/src/policies/MarketMaking.sol#L196
https://github.com/GuardianAudits/Baseline-Perps/pull/4

H-05 | Trapped Fees In LoopFacility

Description

In the loop facility fees are often collected to the contract with the _pullReserves function, however
there is no functionality to retrieve these fees.

Recommendation

Implement a function similar to the setFeeRecipient function in the CreditFacility to retrieve these
fees.

Resolution

Baseline Team: The issue was resolved in commit.

13

Category Severity Location Status

Logical Error ● High LoopFacility.sol Resolved

https://github.com/0xBaseline/baseline-v2/blob/8950018baec27d6497fba409cb361a596535447d/src/policies/LoopFacility.sol#L200

H-06 | Missing Blast Configurations

Description

In the LOOPSv1 module there is no configuration for blast yields in the constructor.

Recommendation

Add blast yields configuration to the constructor.

Resolution

Baseline Team: The issue was resolved in commit.

14

Category Severity Location Status

Best Practices ● High LOOPS.v1.sol: 50 Resolved

https://github.com/0xBaseline/baseline-v2/blob/b8f022c0fd0f3b2dd9e40eb20661f1250bf1877d/src/modules/LOOPS.v1.sol#L52

M-01 | MarketMaking Ignores Loops Capacity

Description

Additional debt can now serve as capacity for the Baseline system in the Loops vault. This is
accounted for in the CreditFacility but not in the MarketMaking contract. As a result the capacity
checks between the CreditFacility and MarketMaking policies will not agree.

Recommendation

Include the LOOPS.totalDebt() when computing the capacity in the MarketMaking contract.

Resolution

Baseline Team: The issue was resolved in commit.

15

Category Severity Location Status

Logical Error ● Medium MarketMaking.sol: 553 Resolved

https://github.com/0xBaseline/baseline-v2/blob/8950018baec27d6497fba409cb361a596535447d/src/policies/MarketMaking.sol#L569

M-03 | Vault Position Not Sum Of User Positions

Description

Function getFundingSince is not perfectly precise, such that the decay of two time deltas X and Y is
not the same as the funding decay of one time delta X + Y. This is important since chargeFunding
only updates the last update timestamp for the vault position, not user positions.

Consider this scenario where there is only one open position:
1) 10 seconds pass.
2) Vault is charged funding for 10 second decay.
3) 200 more seconds pass.
4) Vault is charged funding for 200 second decay; User is charged funding for 210 second delay.
5) User sends request to close their position.

Ultimately, the latest position of the vault is not aligned with the latest position of the user due to the
imprecision of getFundingSince. The position the user can reduce is greater than the latest vault
position, causing an underflow when performing vault.position = _positionToReduce.

This can be harmful in the case there are multiple open positions, and a single depositor is left
hanging and unable to close their position. Note that this issue is also applicable to the vault.debt =
debtToReduce_; calculation as the debt is also updated when funding is charged.

Recommendation

Change the reduction to:

Resolution

Baseline Team: Resolved. 16

Category Severity Location Status

DoS ● Medium LOOPS.v1.sol Resolved

uint256 amtPosToReduce = vault.position < _positionToReduce * vault.position:

_positionToReduce;

vault.position = amtPosToReduce; uint amtDebtToReduce = vault.debt < debtToReduce_ *

vault.debt : debtToReduce_; vault.debt = amtDebtToReduce; // bAsset.transfer(msg.sender,

amtPosToReduce);

M-04 | Slide Causes Anchor To Disappear

Description

In the slide function the reserves of the anchor position are added back to the anchor after
potentially extending the Anchor further downwards with a call to _updateTicks.

This can result in the Anchor position having little liquidity or disappearing entirely after the slide
operation. This is because the price may have been set less than or equal to the lower end of the
Anchor position, in which case there would be no reserves in the liquidity position.

In this case the Anchor position would not be built up again until a sweep occurs, and in the
meantime there can be erratic price fluctuations between the floor and discovery which may be far
apart.

Recommendation

In these situations consider keeping the Anchor position to the tickSpacing above the current price
so that the Anchor does not entirely disappear, but is not extended below the active price because
that would require reserves to be pulled from the floor.

Otherwise be aware of this quirk in the system and document it for users and integrators.

Resolution

Baseline Team: Acknowledged.

17

Category Severity Location Status

Warning ● Medium MarketMaking.sol: 410 Acknowledged

M-05 | Incorrect Virtual Reserves Accounting

Description

In the launch function the pessimisticCapacity includes the floor reserves when stretching the virtual
reserves over the entire floor position to compute its worst case capacity.

This incorrectly accounts for stretching out the floor reserves which would actually increase if the
price were to rise to the upper floor tick.

This was the original reason why the virtual reserves had to be stretched — because they would not
receive corresponding reserves in as price rose to the upper tick of the floor.

This accounting is attempted to be fixed by leaving the bAssets of the floor position in the circulating
supply, as if they had been swapped out of the floor as price rose. However this again does not
account for the reserves of the floor increasing due to swap input amounts.

Recommendation

Remove the special accounting for the floor position and revert to the original solvency check that
was previously present in the launch function, with the one addition of the LOOPS.totalDebt() value in
the pessimisticCapacity accounting.

Resolution

Baseline Team: The issue was resolved in commit.

18

Category Severity Location Status

Validation ● Medium BaselineInit.sol: 214 Resolved

https://github.com/0xBaseline/baseline-v2/blob/94153b247cbc2490a8a14819c2a2fdaf6c5df1ad/src/policies/BaselineInit.sol#L217

L-01 | Unnecessary tradingInFloor Case

Description

Since the floor.bAssets will only be nonzero if the price is inside of the floor, the floor.bAssets can
just be removed from the subtraction of BPOOL.totalSupply instead of using the special
_tradingInFloor case.

Recommendation

Remove the special case handling and remove the floor.bAssets from the subtraction of
BPOOL.totalSupply.

Resolution

Baseline Team: Resolved.

19

Category Severity Location Status

Optimization ● Low LoopFacility.sol: 252, 258 Resolved

L-02 | Lacking Use Of Tick Spacing Constant

Description

In the getCurrentThreshold the full tick spacing below the sweepTick is computed, however the
computation uses a direct subtraction of 200 rather than the T_S constant which is determined by
the BPOOL.

Recommendation

Use the T_S rather than a hardcoded spacing of 200.

Resolution

Baseline Team: The issue was resolved in commit.

20

Category Severity Location Status

Best Practices ● Low MarketMaking.sol: 545 Resolved

https://github.com/0xBaseline/baseline-v2/blob/8950018baec27d6497fba409cb361a596535447d/src/policies/MarketMaking.sol#L553

L-03 | Anchor Can Exceed Defined Width

Description

The slide function will now no longer move the anchorUpper/discoveryLower tick down, and instead
only extend the lower tick of the anchor range downwards.

This is because the _updateTicks function will not update the sweepTick but will set the lower
anchor tick as the anchor width below the activeTS which has indeed changed.

Recommendation

This may be expected behavior, if so then consider documenting clearly that the Anchor can exceed
the defined width.

Resolution

Baseline Team: Acknowledged.

21

Category Severity Location Status

Documentation ● Low Acknowledged

L-04 | Anchor Ticks Crossed In Drop

Description

In the drop function when the tick range is assigned to the Anchor position in _decrementSweepTick
it is possible for the targetSweepTick to be lower than the anchorTickL in rare cases where there is a
large gap between the Anchor and Floor ranges which price has traversed.

This will result in an InvalidTickRange revert and disallow the drop from occurring. The workaround
is to simply call slide before dropping so that the anchor can sufficiently extend downwards.

Recommendation

Consider adding this case to the return false case in _decrementSweepTick to explicitly revert with
the CannotDropDiscovery error or consider adding a revert specific to cases where slide must be
called first.

Resolution

Baseline Team: The issue was resolved in commit.

22

Category Severity Location Status

DoS ● Low MarketMaking.sol: 481 Resolved

https://github.com/0xBaseline/baseline-v2/blob/94153b247cbc2490a8a14819c2a2fdaf6c5df1ad/src/policies/MarketMaking.sol#L481

L-05 | Position Can Increase Without Debt

Description

If _totalCollateral is a very small value such as 20 wei, debt_ =
_totalCollateral.mulWad(BPOOL.getBaselineValue()); will output 0 due to precision loss, and the
position will increase without a corresponding increase in debt.

Recommendation

Consider validating that the debt is non-zero when opening a position.

Resolution

Baseline Team: The issue was resolved in commit.

23

Category Severity Location Status

Logical Error ● Low LoopFacility.sol: 124 Resolved

https://github.com/0xBaseline/baseline-v2/blob/94153b247cbc2490a8a14819c2a2fdaf6c5df1ad/src/modules/LOOPS.v1.sol#L114

L-06 | Typo

Description

The documentation for function openPosition contains the typo posisble which should be updated to
possible.

Recommendation

Update the typo.

Resolution

Baseline Team: The issue was resolved in commit.

24

Category Severity Location Status

Typo ● Low LoopFacility.sol: 118 Resolved

https://github.com/0xBaseline/baseline-v2/blob/94153b247cbc2490a8a14819c2a2fdaf6c5df1ad/src/policies/LoopFacility.sol#L119

L-07 | Zero Transfer DoS

Description

In the openPosition function a refund is issued to the user when the maximum reserves are not fully
used, however even when the reservesIn_ = _maxReservesIn the transfer is still initiated.

For some reserve tokens this may cause a revert due to the zero amount transfer. Additionally
another potential zero transfer occurs in the closePosition function on line 190.

Recommendation

Add an if case to both of these transfers so that they are only attempted if there is a nonzero transfer
amount.

Resolution

Baseline Team: The issue was resolved in commit.

25

Category Severity Location Status

DoS ● Low LoopFacility.sol: 151, 190 Resolved

https://github.com/0xBaseline/baseline-v2/blob/94153b247cbc2490a8a14819c2a2fdaf6c5df1ad/src/policies/LoopFacility.sol#L153

L-08 | Unexpected Deployment Behavior

Description

When deploying the new MarketMaking policy the slideTick will be assigned to the current active tick
spacing. However this tick spacing may be in the current Discovery range, which can lead to a minor
unexpected state.

Recommendation

Be sure to deploy the new MarketMaking system when the active price is within the Anchor position.

Resolution

Baseline Team: Resolved.

26

Category Severity Location Status

Configuration ● Low Global Resolved

L-09 | Infinite Slide Glitch

Description

When the activeTick is on an even tick spacing and the slideTick is the direct tick spacing above then
a user can invoke a slide over and over again.

This is because the criteria for a slide is:
activeTick = slideTick - TS

And _updateTicks performs:
slideTick = activeTS

Recommendation

Consider requiring activeTick < slideTick - TS to trigger a slide.

Resolution

Baseline Team: Resolved.

27

Category Severity Location Status

Warning ● Low MarketMaking.sol Resolved

L-10 | Unsafe Casting

Description

Inside _decrementSweepTick the following calculation is performed: uint256 discoveryPremiumTS
= uint256(uint24((sweepTick - activeTS) / T_S)); The issue is that the uint24 may potentially cast a
negative value, causing silent overflow.

For Example:

sweepTick = -64400
activeTS = -64200
Difference = -200
(sweepTick - activeTS) / T_S) = -1
uint24((sweepTick - activeTS) / T_S) = uint24(-1) = 16777215

discoveryPremiumTS becomes much larger than it should be, which leads to an overflow when
performing (tickSpacingsToDecay * T_S)). Consequently, dropping liquidity is prevented from
occurring due to panic overflow.

Recommendation

Consider using SafeCast.

Resolution

Baseline Team: The issue was resolved in commit.

28

Category Severity Location Status

Casting ● Low MarketMaking.sol: 465 Resolved

https://github.com/0xBaseline/baseline-v2/blob/94153b247cbc2490a8a14819c2a2fdaf6c5df1ad/src/policies/MarketMaking.sol#L489

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

29

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

30

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

