

Summary
 Audit Firm Guardian

 Prepared By Owen Thurm, Daniel Gelfand

 Client Firm Baseline

 Final Report Date February 25, 2025

Audit Summary

Baseline engaged Guardian to review the security of their market making looping updates. From the

18th of January to the 22nd of January, a team of 2 auditors reviewed the source code in scope. All

findings have been recorded in the following report.

Issues Detected Throughout the engagement 3 High/Critical issues were uncovered and promptly

remediated by the Baseline team.

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors,

refer to the complete audit report below.

🔗 Blockchain network: Base

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/Baseline-Perps 2

https://github.com/guardianaudits
https://github.com/GuardianAudits/Baseline-Perps

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Findings & Resolutions …………..…………………………….……………………… 7

Addendum

Disclaimer …………………………………………………………………..…………..… 21

About Guardian Audits ………………………………..………………………………… 22

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Baseline

Language Solidity

Codebase https://github.com/0xBaseline/baseline-v2

Commit(s) 9664eb6679395d34e9bff36f8c919cb3f859ed3b

Delivery Date February 25, 2025

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 0 0 0 0 0 0

 ● High 3 0 0 0 1 2

 ● Medium 1 0 0 1 0 0

 ● Low 9 0 0 7 0 2

https://github.com/0xBaseline/baseline-v2

5

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ● Critical ● High ● Medium

Likelihood: Medium ● High ● Medium ● Low

Likelihood: Low ● Medium ● Low ● Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core
. functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected.
. The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is
. notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,
. and the cost of the attack is relatively low compared to the amount gained or the
. disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.

6

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

Findings & Resolutions

7

ID Title Category Severity Status

H-01 Sqrt Price Compared With Price Logical Error ● High Resolved

H-02 Liquidity Rebalance Arbitrage Gaming ● High Partially Resolved

H-03 Third Party Liquidity Results In
DoS Logical Error ● High Resolved

M-01 Incorrect Bump Calculation Logical Error ● Medium Acknowledged

L-01 Unnecessary Min Optimization ● Low Resolved

L-02 Unused Variable Gas Optimization ● Low Resolved

L-03 Lacking Threshold Liquidity Cap Validation ● Low Acknowledged

L-04 _getUtilizationRate Reverts Near
Min Tick DoS ● Low Acknowledged

L-05 Rebalances Inconsistently
Responsive

Unexpected
Behavior ● Low Acknowledged

L-06 Lacking Balance Sweeps Defensive Code ● Low Acknowledged

L-07 Outdated getBaselineValue
Function Warning ● Low Acknowledged

L-08 getCirculatingSupply Includes
BPOOL Assets

Unexpected
Behavior ● Low Acknowledged

L-09 Lacking blvTick Validation Validation ● Low Acknowledged

H-01 | Sqrt Price Compared With Price

Description

In the _getUtilizationRate function the priceAdj is computed as:

FixedPointMathLib.divWad(TickMath.getSqrtRatioAtTick(activeTickAdj), FixedPoint96.Q96);

Which has units of the square root of the price. However the priceAdj is compared against the result
of getBLV to compute the premiumRatio.

The result of getBLV is a price, instead of a square root price. Therefore the premiumRatio is
incorrect.

Recommendation

Square the priceAdj to compute the correct price.

Resolution

Baseline Team: Resolved.

8

Category Severity Location Status

Logical Error ● High MarketMaking.sol: 428 Resolved

H-02 | Liquidity Rebalance Arbitrage

Description

The _updateTicks logic intentionally assigns the anchorTick such that new bAssets are not minted
within the anchor range when the bAssets minted would be in addition to the liquidity in the
discovery range.

This is to avoid the following arbitrage attack:
• Anchor liquidity < Discovery liquidity
• An attacker makes a large sell through the discovery range and into the anchor range
• Due to the instantaneous large sell, and the leveraging of the anchor liquidity, the anchor liquidity
becomes greater than the Discovery liquidity
• Now the attacker can buy back the same amount of bAssets but at a lower average price because
of the increased Anchor liquidity relative to the liquidity they sold through.

There is however another similar arbitrage attack which is not protected against:
• Anchor liquidity < Discovery liquidity
• Instead of selling through the discovery range, the attacker sells from the top of the Anchor range
• After the sell, the rebalance causes the higher liquidity discovery range to come down closer to the
new price
• Now the attacker can buy back the same amount of bAssets but at a lower average price because
of the increased Discovery liquidity relative to the liquidity they sold through.
• As long as the leveraging of the Anchor position is not greater than the liquidity difference between
the Anchor and Discovery then this arbitrage is profitable.

Recommendation

Consider rate limiting the amount of ticks that can be dropped at a time to limit the scale of this
arbitrage vector.

Resolution

Baseline Team: Partially Resolved.
9

Category Severity Location Status

Gaming ● High MarketMaking.sol Partially Resolved

H-03 | Third Party Liquidity Results In DoS

Description

The removeAllFrom function in the BPOOL contract reports the entirety of third party liquidity as fees
when the liquidityToRemove > currentLiquidity, however the excess liquidity is burned from the
msg.sender in the _removeLiquidity function.

This means that the calling contract will think it has more bAssets than it does because the reported
bAssetFees_ includes an amount that was burnt from the sender.

During rebalances this results in an underflow DoS when ultimately attempting to send more
bAssets then the contract holds to the fee receiver for bAssetFees_.

Recommendation

Do not burn the bAssets from the msg.sender in the _removeLiquidity function when removing third
party liquidity.

Resolution

Baseline Team: Resolved.

10

Category Severity Location Status

Logical Error ● High BPOOL.sol: 442 Resolved

M-01 | Incorrect Bump Calculation

Description
The criteria for a bump is described as:

That the total reserves in the system (inclusive of debt), when placed across the anchor position
(with no reserves the floor), is enough to buy back the entire circulating supply.

However, in the _canBump function the capacity is calculated with the activeX96 as the upper to the
Anchor range.

This is however flawed because the activeX96 may not reside within the new Anchor range. Instead
the anchorTick may be selected such that the activeX96 is actually within the Discovery range.

This would not be an issue if the Discovery and Anchor ranges were guaranteed to have the same
concentration of reserves.

However it is possible that the Discovery range liquidity is actually lower than the Anchor range
liquidity, in which case assuming that the reserves were evenly spread out across this range would
underestimate the capacity of the protocol and errantly indicate that a bump would not be possible
when in fact it can be.

Recommendation

Consider executing the bump logic after the new anchorTick and liquidities of the Anchor and
Discovery ranges have been defined. Then do not allow the bump logic to change the liquidity of the
Anchor or discovery.

Resolution

Baseline Team: Acknowledged.
11

Category Severity Location Status

Logical Error ● Medium MarketMaking.sol: 287 Acknowledged

L-01 | Unnecessary Min

Description

The _getAnchorReserves function uses the min function between anchorReserves_ and
totalReserves - _getVirtualReserves() inside the case where it is already determined that
totalReserves - _getVirtualReserves() < anchorReserves_.

Therefore the min computation is unnecessary and the anchorReserves_ can always just be
assigned to the totalReserves - _getVirtualReserves() value.

Recommendation

Remove the min computation and always assign the anchorReserves_ to totalReserves -
_getVirtualReserves().

Resolution

Baseline Team: Resolved.

12

Category Severity Location Status

Optimization ● Low MarketMaking.sol: 395 Resolved

L-02 | Unused Variable

Description

In the _getACU function the activeX96 is declared but never used.

Recommendation

Remove the activeX96 variable from the _getACU function.

Resolution

Baseline Team: Resolved.

13

Category Severity Location Status

Gas Optimization ● Low MarketMaking.sol: 364 Resolved

L-03 | Lacking Threshold Liquidity Cap

Description

When deploying the threshold liquidity to the Discovery position in the _deployLiquidity function there
is no cap on the amount of reserve assets that can be used.

It may be possible in some rare cases that the active price is within the Discovery range during a
rebalance and the corresponding reserves requested by the _getThresholdLiquidity result are greater
than the amount sitting in the MarketMaking contract due to most of the reserves being virtual
reserves.

In this scenario the current logic will revert instead of gracefully handling the conditions, thus
preventing a rebalance.

Recommendation

Consider how this edge case should be handled. If a revert is acceptable then consider explicitly
reverting in this case.

Otherwise gracefully handle the case where the _getThresholdLiquidity result requests more
reserves than are available in the MarketMaking contract, similarly to how this is handled in the
_getAnchorReserves function.

Resolution

Baseline Team: Acknowledged.

14

Category Severity Location Status

Validation ● Low MarketMaking.sol: 303 Acknowledged

L-04 | _getUtilizationRate Reverts Near Min Tick

Description

In the _getUtilizationRate function the active tick is reduced by the BUMPABLE_PREMIUM which is
currently set at 1500 ticks.

In scenarios where the active tick is near the min tick, this will lead to a subsequent revert when
attempting to do computations with a resulting tick that is under the min tick.

Recommendation

Ensure that system configurations never allow for any active price to be near the min tick.

Resolution

Baseline Team: Acknowledged.

15

Category Severity Location Status

DoS ● Low MarketMaking.sol: 425 Acknowledged

L-05 | Rebalances Inconsistently Responsive

Description

In _updateTicks the rebalanceTicks assignment does not take into account where the active price is,
but rather purely where the anchorTick was assigned to.

This can result in scenarios where the active price has to travel a minimum distance of 100 ticks to
trigger a rebalance, or a maximum distance of 300 ticks to trigger a rebalance.

This makes rebalances less or more responsive during different types of price action which may be
unexpected and lead to unintended results.

Recommendation

Consider taking the activeTick into account when assigning the rebalanceTicks so that liquidity
rebalances are triggered in a more uniform manner.

Resolution

Baseline Team: Acknowledged.

16

Category Severity Location Status

Unexpected Behavior ● Low MarketMaking.sol Acknowledged

L-06 | Lacking Balance Sweeps

Description

In the _removeLiquidity function there is no logic to set aside the reserve assets which may be sitting
in the MarketMaking contract before the liquidity positions are removed.

Any reserves which were artificially sent to the MarketMaking contract are able to affect the market
making operations because balanceOf is used liberally throughout the logic.

This can potentially be used to manipulate a number of things, notably the anchorTick can be
influenced to be the upper or lower tick based upon the buffer reserves which are based upon the
balanceOf

Recommendation

Introduce a bufferedReserves approach similar to the previous iteration of the MarketMaking policy:

https://github.com/0xBaseline/baseline-v2/blob/6434202087be8278f09016f28be7dc9933d1085c/
src/policies/MarketMaking.sol#L434

Resolution

Baseline Team: Acknowledged.

17

Category Severity Location Status

Defensive Code ● Low MarketMaking.sol Acknowledged

https://github.com/0xBaseline/baseline-v2/blob/6434202087be8278f09016f28be7dc9933d1085c/src/policies/MarketMaking.sol#L434
https://github.com/0xBaseline/baseline-v2/blob/6434202087be8278f09016f28be7dc9933d1085c/src/policies/MarketMaking.sol#L434

L-07 | Outdated getBaselineValue Function

Description

In the BPOOL contract the getBaselineValue function still returns the original baseline value of the
lower floor tick instead of the upper floor tick.

Recommendation

Update this function to reflect the real baseline value of the upper floor tick.

Resolution

Baseline Team: Acknowledged.

18

Category Severity Location Status

Warning ● Low BPOOL.sol Acknowledged

L-08 | getCirculatingSupply Includes BPOOL Assets

Description

The getCirculatingSupply function does not subtract the BPOOL contract balance from it’s result and
therefore reports any bAssets sitting in the BPOOL as circulating supply when in fact they should not
be.

This does not cause any immediate issues in the market making logic because the BPOOL assets
are burned before this function is used. However for integrators and public display via this view
function the BPOOL bAsset amount should be removed from the circulating supply result.

Recommendation

Deduct the BPOOL bAssets from the result of the getCirculatingSupply function.

Resolution

Baseline Team: Acknowledged.

19

Category Severity Location Status

Unexpected Behavior ● Low MarketMaking.sol Acknowledged

L-09 | Lacking blvTick Validation

Description

The MarketMaking contract does not impose any validation on the starting value of the blvTick,
therefore it is possible that a deployment of the market making policy is based on a blvTick that
does not agree with the upper tick of the floor position.

This is currently the case in the TestFoundation as the BaselineInit.launch invocation uses the
INITIAL_FLOOR_TICK as the initial floor lower tick while the MarketMaking deployment uses the
same INITIAL_FLOOR_TICK as the initial blvTick.

This deployment allows for a scenario where the liquidity structure cannot absorb all supply since
funds can initially be borrowed in the credit and looping facilities at a higher baseline value which is
based on the upper tick of the floor position rather than the blvTick.

Recommendation

Consider adding validation in the constructor of the MarketMaking policy to ensure that no errant
deployments can happen which do not have agreement between the blvTick and the range assigned
in the BPOOL module.

Resolution

Baseline Team: Acknowledged.

20

Category Severity Location Status

Validation ● Low MarketMaking.sol Acknowledged

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

21

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

22

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

