

Summary
 Audit Firm Guardian

 Prepared By Owen Thurm, Daniel Gelfand, Osman Ozdemir,

 Mark Jonathas, 0xCiphky, Anonymous Auditor

 Client Firm Baseline

 Final Report Date February 25, 2025

Audit Summary

Baseline engaged Guardian to review the security of its market making looping updates. From the

27th of January to the 3rd of February, a team of 6 auditors reviewed the source code in scope. All

findings have been recorded in the following report.

Issues Detected Throughout the engagement 2 High/Critical issues were uncovered and promptly

remediated by the Baseline team.

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors,

refer to the complete audit report below.

🔗 Blockchain network: Base

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/Baseline-Perps
2

https://github.com/guardianaudits
https://github.com/GuardianAudits/Baseline-Perps

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Findings & Resolutions …………..…………………………….……………………… 7

Addendum

Disclaimer …………………………………………………………………..…………..… 27

About Guardian Audits ………………………………..………………………………… 28

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Baseline

Language Solidity

Codebase https://github.com/0xBaseline/baseline-v2

Commit(s) Initial commit: 1dc6ca6a06ae44b5ddae5be537c902db764608d7
Final commit: a8c321545c8505873e57a4350dbbd0f74372928d

Delivery Date February 25, 2025

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 1 0 0 0 0 1

 ● High 1 0 0 0 1 0

 ● Medium 3 0 0 3 0 0

 ● Low 13 0 0 5 0 8

https://github.com/0xBaseline/baseline-v2

5

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ● Critical ● High ● Medium

Likelihood: Medium ● High ● Medium ● Low

Likelihood: Low ● Medium ● Low ● Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core
. functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected.
. The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is
. notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,
. and the cost of the attack is relatively low compared to the amount gained or the
. disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.

6

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

Findings & Resolutions

7

ID Title Category Severity Status

C-01 Mishandled Donated Liquidity
Breaks Rebalance DoS ● Critical Resolved

H-01 Guaranteed Profit By
Rebalancing Gaming ● High Partially Resolved

M-01 Mismatching Baseline Values Logical Error ● Medium Acknowledged

M-02 updateTicks Should Use
Previous Liquidity Logical Error ● Medium Acknowledged

M-03 DISCOVERY_LENGTH Hardcoded
For 1% Fee Pools Logical Error ● Medium Acknowledged

L-01 Unnecessary Permission
Request

Superfluous
Code ● Low Resolved

L-02 Unused Error Superfluous
Code ● Low Resolved

L-03 Unused Tick Bounds In
canRebalance

Superfluous
Code ● Low Resolved

L-04 Active Tick Is Not Checked
During Configuration Validation ● Low Resolved

L-05 Incorrect Comment Documentation ● Low Resolved

L-06 Unused Import Superfluous
Code ● Low Resolved

L-07 Liquidity Donations Not Tracked
In New Ranges Logical Error ● Low Acknowledged

L-08 Liquidity Position DOS In
Extreme Ticks DoS ● Low Acknowledged

Findings & Resolutions

8

ID Title Category Severity Status

L-09 Unecessary Min() Superfluous
Code ● Low Resolved

L-10 Tick And sqrtPrice Misalignment
Side Effects Warning ● Low Acknowledged

L-11 Missing Anchor Range Warning ● Low Acknowledged

L-12 Remove Console Import Superfluous
Code ● Low Resolved

L-13 getCirculatingSupply Incorrect
For Time Logical Error ● Low Acknowledged

C-01 | Mishandled Donated Liquidity Breaks Rebalance

Description

The removeAllFrom function in the BPOOLv1 contract is intended to handle any unexpected liquidity
(i.e., donations) by removing it from the position and then accounting for both the liquidity amount
and its fees in the total bAssetFees_, which is subsequently sent to the fee recipient.

However, the current implementation does not behave as intended. Instead, the donated amount is
burned in the internal removeLiquidity function while that same burned amount is also counted in
bAssetFees.

This discrepancy causes the MarketMaking contract’s bAsset balance to be lower than the total
bAssetFees_, leading to a revert when fees are transferred.

Because of this revert, the rebalance function fails to execute, preventing the protocol from adjusting
its liquidity to changing market conditions. Additionally, a malicious actor could intentionally exploit
this flaw by donating, causing a DOS to the rebalance function.

Recommendation

Modify the implementation so that the donated liquidity is not burned and is correctly accounted for
and transferred to the fee recipient.

Resolution

Baseline Team: Resolved.

9

Category Severity Location Status

DoS ● Critical BPOOL.v1.sol: 209 Resolved

PoC

https://github.com/GuardianAudits/baseline-mm-2/blob/fb34449337782dc635e277bfed2b0d4db19aa185/test/guardian/DonationBurned.t.sol#L55

H-01 | Guaranteed Profit By Rebalancing

Description

The rebalance function removes the protocol-owned liquidity, updates ticks, and redeploys liquidity
using new tick ranges. The _updateTicks logic determines the anchorTick based on whether the
anchor liquidity is higher or lower than the discovery liquidity.

There are immediate arbitrage opportunities by using the rebalance functionality. When the anchor
liquidity is higher than the discovery liquidity:
• The upper anchor tick is below the active tick, and the current price is within the discovery range.
• User can buy a large amount of bToken, pushing the price even higher.
• Call rebalance, which updates ticks and range liquidities.
• Sell the same amount of bToken at a higher average price due to higher anchor liquidity.

A similar arbitrage opportunity can occur in the opposite direction as well. When anchor liquidity is
lower than discovery liquidity, the user can sell, rebalance, and buy back. This time, the user sells in a
low-liquidity environment and buys back in a high-liquidity environment.

Recommendation

Consider rate limiting the amount of ticks that can be dropped at a time to limit the scale of this
arbitrage vector.

Resolution

Baseline Team: Partially Resolved by rate limiting the arbitrage.

10

Category Severity Location Status

Gaming ● High MarketMaking.sol Partially Resolved

PoC

https://github.com/GuardianAudits/baseline-mm-2/pulls

M-01 | Mismatching Baseline Values

Description

After the updates, the blv is calculated based on the upper floor tick in the MarketMaking,
CreditFacility, and LoopFacility contracts. However, in the BPOOL contract, it is still calculated using
the lower floor tick.

The BaselineInit.launch function uses the baseline value from the BPOOL contract when calculating
capacity, which creates a discrepancy.

Recommendation

Update the getBaselineValue function in BPOOL contract.

Resolution

Baseline Team: Acknowledged.

11

Category Severity Location Status

Logical Error ● Medium BPOOL.sol: 270 Acknowledged

M-02 | updateTicks Should Use Previous Liquidity

Description

In the _updateTicks function of the MarketMaking policy there is logic to alter the upper tick of the
anchor position based upon the liquidity of the Discovery position relative to the Anchor position
liquidity.

This is done to ideally prevent bAsset supply being minted in excess of the Discovery position
liquidity in the range above the price in the Anchor position.

This reduces the magnitude of an arbitrage opportunity that would arise from selling through the
Discovery range into the Anchor range and benefitting from the increased liquidity due to a higher
leverage of the Anchor.

However in such an arbitrage scenario, the liquidity that the Anchor position should be compared
against is the liquidity of the previous Discovery position rather than the liquidity of the new
Discovery position.

This is because the old Discovery position is the one which is sold through to reach the new Anchor
range and thus trigger the rebalance and therefore is the liquidity which the Arbitrage economics are
based upon.

As a result the Anchor range upper tick handling should consider the liquidity of the old Discovery
position rather than the current result of the _getThresholdLiquidity function, which will be the new
Discovery position liquidity.

Recommendation

Consider comparing the predicted anchor liquidity against the minimum of both the result of the
_getThresholdLiquidity and the old Discovery position liquidity to be the most conservative in limiting
the arbitrage opportunities from selling through the Discovery position.

Resolution

Baseline Team: Acknowledged. 12

Category Severity Location Status

Logical Error ● Medium MarketMaking.sol Acknowledged

M-03 | DISCOVERY_LENGTH Hardcoded For 1% Fee Pools

Description

The DISCOVERY_LENGTH variable in the MarketMaking contract is intended to represent 30 tick
spacings, as indicated by the comment.

However, its current implementation as 30 x 200 only aligns with 1% fee pools. This means the
calculation will be incorrect if applied to pools with different fee tiers.

Recommendation

If the protocol intends to only use 1% fee pools, no changes are needed. Otherwise, it should obtain
the correct tick spacing from the BPOOLv1 contract instead.

Resolution

Baseline Team: Acknowledged.

13

Category Severity Location Status

Logical Error ● Medium MarketMaking.sol: 58 Acknowledged

L-01 | Unnecessary Permission Request

Description

The MarketMaking contract requests permission for BPOOL.mint function. However, this function is
not called from MarketMaking after updates, and the permission request can be removed.

Recommendation

Consider removing unnecessary permission request.

Resolution

Baseline Team: Resolved.

14

Category Severity Location Status

Superfluous Code ● Low MarketMaking.sol: 144 Resolved

L-02 | Unused Error

Description

NotOwner error in the MarketMaking contract is defined but never used.

Recommendation

Remove unused error.

Resolution

Baseline Team: Resolved.

15

Category Severity Location Status

Superfluous Code ● Low MarketMaking.sol: 46 Resolved

L-03 | Unused Tick Bounds In canRebalance

Description

The canRebalance function retrieves the anchor range bounds using the _getTSBounds function.
However, these ticks are not utilized in canRebalance, as rebalanceTicks are used to determine price
movement.

Recommendation

Consider removing unused ticks and the _getTSBounds call.

Resolution

Baseline Team: Resolved.

16

Category Severity Location Status

Superfluous Code ● Low MarketMaking.sol: 167 Resolved

L-04 | Active Tick Is Not Checked During Configuration

Description

In the previous version of the contract, the active tick was required to be within the anchor range
during configuration.

Currently, the MarketMaking.configureDependencies function still retrieves the lower and upper ticks
of the anchor range.

However, unlike before, these ticks are no longer used for comparison against the active tick and
remain unutilized.

Recommendation

If the active tick must be within the anchor range, compare it against the anchor range ticks.
Otherwise, remove the BPOOL.getTicks(Range.ANCHOR) call from the function.

Resolution

Baseline Team: Resolved.

17

Category Severity Location Status

Validation ● Low MarketMaking.sol: 118 Resolved

L-05 | Incorrect Comment

Description

BUMPABLE_PREMIUM is set to 1500, with a comment stating "1500 tick spacings". However, this
value represents only 1500 ticks, not 1500 tick spacings. Based on the current setup, it corresponds
to 7.5 tick spacings.

Recommendation

Update to comment to 1500 ticks.

Resolution

Baseline Team: Resolved.

18

Category Severity Location Status

Documentation ● Low MarketMaking.sol: 59 Resolved

L-06 | Unused Import

Description

SafeCastLib library is imported in MarketMaking contract but never used.

Recommendation

Consider removing unused imports.

Resolution

Baseline Team: Resolved.

19

Category Severity Location Status

Superfluous Code ● Low MarketMaking.sol: 7 Resolved

L-07 | Liquidity Donations Not Tracked In New Ranges

Description

The rebalance process removes liquidity from all existing ranges, checks for donations during this
step, and accounts for them as fees before updating the ranges and re-adding liquidity.

However, when liquidity is added back to the new ranges, previously donated amounts in these new
ranges are not accounted for.

As a result, in _deployLiquidity, if the discovery range had prior donations, the buffer amount and
consequently the anchorReserves will differ from the values in _updateTicks, which were used to
adjust the next rebalance ticks and anchorTick.

This discrepancy can lead to imbalances in the rebalancing logic, introducing inefficiencies in the
system. For example, _updateTicks ensures that the anchor does not include the current price when
anchor liquidity exceeds discovery liquidity.

However, a prior donation could cause this condition to be met, resulting in an extra minted supply
and potentially creating an arbitrage opportunity for users, though its profitability may be limited.

Recommendation

Remove any unexpected extra liquidity as fees before adding liquidity to the new ranges to ensure
consistency in rebalancing calculations.

Resolution

Baseline Team: Acknowledged.

20

Category Severity Location Status

Logical Error ● Low MarketMaking.sol: 307 Acknowledged

L-08 | Liquidity Position DOS In Extreme Ticks

Description

In very extreme ticks such as -557658 an attacker would only need 300 ETH to fill all available
liquidity (liquidityGross). This would make it impossible to rebalance a position in this range.

Therefore, if the initial active tick is around this tick, an attacker could prevent BVL from ever
increasing. The same issue can occur in higher ticks for bAsset, where a user can buy many bAssets
when they have a low price and DOS a liquidity range in high ticks.

Making a barrie on how high discovery range can rise before hitting the maxed out liquidity. We
would need approximately 1 billion bAssets to DOS the liquidity range between tick 317273 and
317273 - 200 for example.

Recommendation

We recommend the team to be aware that having a very low INITIAL_ACTIVE_TICK (such as
-557658) would make it possible to either DOS a nearby liquidity position using ETH reserves or
make it possible for someone to gather enough bAssets to DOS a liquidity range in the higher tick
ranges such as 317273, preventing the price to go further up.

Ultimately, putting a hardcoded limitation on the minimum INITIAL_ACTIVE_TICK would prevent this
issue.

Resolution

Baseline Team: Acknowledged.

21

Category Severity Location Status

DoS ● Low MarketMaking.sol, Tick.sol Acknowledged

L-09 | Unecessary Min()

Description

The if statement on line 414 already implies that anchorReserves_ > totalReserves -
_getVirtualReserves(). Therefore the use of min() is redundant.

Recommendation

We recommend refactoring line 415 by removing min() and setting anchorReserves_ to the
difference:

anchorReserves_ = totalReserves - _getVirtualReserves());

Resolution

Baseline Team: Resolved.

22

Category Severity Location Status

Superfluous Code ● Low MarketMaking.sol Resolved

L-10 | Tick And sqrtPrice Misalignment Side Effects

Description

When swapping zeroToOne an edge scenario makes it so active tick and sqrtPrice can be
misaligned, with tick being one less than what is should.

This could lead to rebalancing positions based on the wrong tick value. Specifically, using one tick
lower than what it should (in relation to sqrtPrice). This ultimately makes it so the positions would be
assigned to a lower range than what it should.

Although we could not find a scenario where this is harmful for the protocol, we believe it has
potential to do so in unforeseen circumstances or with further development.

Recommendation

We recommend the Baseline team to be mindful of this scenario as they implement new features or
change the current ones.

Resolution

Baseline Team: Acknowledged.

23

Category Severity Location Status

Warning ● Low MarketMaking.sol Acknowledged

L-11 | Missing Anchor Range

Description

When resetting the ticks for the ranges, it is possible for the anchor range to have the same value in
the upper tick and lower tick. addReservesTo() will prevent a revert from happening by returning
early, but this will lead to no liquidity deployed for the anchor range.

Recommendation

Consider shifting the upper and lower ticks if they are equal, so that the anchor range can be
deployed.

Resolution

Baseline Team: Acknowledged.

24

Category Severity Location Status

Warning ● Low MarketMaking.sol: 285 Acknowledged

L-12 | Remove Console Import

Description

BPOOL.v1.sol and MarketMaking imports the console2 library. Console logging can be removed for
production since it is unnecessary.

Recommendation

Remove the imports of the console2 library.

Resolution

Baseline Team: Resolved.

25

Category Severity Location Status

Superfluous Code ● Low BPOOL.v1.sol: 17 & MarketMaking.sol: 23 Resolved

L-13 | getCirculatingSupply Incorrect For Time

Description

The getCirculatingSupply view function in the MarketMaking contract does not account for collateral
in the Loops facility which is burned with time passing.

However the corresponding getTotalCapacity function will account for the capacity change with
respect to time resulting from the LOOPS.totalDebt().

This may mislead users and integrators and increases the risk of this function causing bugs in the
future due to this undocumented behavior.

Recommendation

Consider adjusting the getCirculatingSupply function to account for the collateral in the Loops
facility which is yet to be burnt.

Resolution

Baseline Team: Acknowledged.

26

Category Severity Location Status

Logical Error ● Low MarketMaking.sol Acknowledged

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

27

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

28

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

