

Summary
 Audit Firm Guardian

 Prepared By Owen Thurm, Daniel Gelfand, Osman Ozdemir,

 Mark Jonathas, Wafflemak, Michael Lett

 Client Firm Baseline

 Final Report Date February 27, 2025

Audit Summary

Baseline engaged Guardian to review the security of their Fixed supply updates. From the 17th of

February to the 21st of February, a team of 6 auditors reviewed the source code in scope. All findings

have been recorded in the following report.

Issues Detected Throughout the engagement 4 High severity issues were uncovered and promptly

addressed by the Baseline team.

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors,

refer to the complete audit report below.

🔗 Blockchain network: Base

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/Baseline-Perps 2

https://github.com/guardianaudits
https://github.com/GuardianAudits/Baseline-Perps

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Findings & Resolutions …………..…………………………….……………………… 7

Addendum

Disclaimer …………………………………………………………………..…………..… 44

About Guardian Audits ………………………………..………………………………… 45

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Baseline

Language Solidity

Codebase https://github.com/0xBaseline/baseline-v2

Commit(s) Initial commit: dca62bb65e86aa35af34b51366183ece3dbc0ee3
Final commit: b74ea9464b2fb28448ebc8e5706b2ef7fb5ee24f

Delivery Date February 27, 2025

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 0 0 0 0 0 0

 ● High 4 0 0 1 0 3

 ● Medium 10 0 0 2 0 8

 ● Low 20 0 0 6 0 14

https://github.com/0xBaseline/baseline-v2

5

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ● Critical ● High ● Medium

Likelihood: Medium ● High ● Medium ● Low

Likelihood: Low ● Medium ● Low ● Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core
. functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected.
. The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is
. notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,
. and the cost of the attack is relatively low compared to the amount gained or the
. disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.

6

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

Findings & Resolutions

7

ID Title Category Severity Status

H-01 Invalid Remaining Reserves
Calculation Logical Error ● High Resolved

H-02 DoS Of Deployment DoS ● High Acknowledged

H-03 Extend Interest Stolen Logical Error ● High Resolved

H-04 All Credit Interests Are Deployed
As Liquidity Logical Error ● High Resolved

M-01 Missing Equality Operator Logical Error ● Medium Acknowledged

M-02 Outdated Anchor Tick Used In
canBump Logical Error ● Medium Resolved

M-03 Unable To Rebalance Above
DISCOVERY_LENGTH Logical Error ● Medium Resolved

M-04 Temporary DoS Of
openPosition() DoS ● Medium Resolved

M-05 Capacity Errantly Increased Logical Error ● Medium Acknowledged

M-06 External Liquidity Causes Trade
Reverts Logical Error ● Medium Resolved

M-07 Rebalance Prevented Near Floor
Tick DoS ● Medium Resolved

M-08 Swap With Rebalances Errantly
Used Logical Error ● Medium Resolved

M-09 Donated Liquidity Not Given To
Fee Recipient Logical Error ● Medium Resolved

Findings & Resolutions

8

ID Title Category Severity Status

M-10 Failed Liquidity Deployment Due
To Insufficient Balance DoS ● Medium Resolved

L-01 Unused Code Optimization ● Low Resolved

L-02 Lack Of Reentrancy Validation Reentrancy ● Low Acknowledged

L-03 Swaps Allowed To Non-Baseline
Pools Validation ● Low Resolved

L-04 Superfluous balanceOf Call Optimization ● Low Resolved

L-05 Payer Param No Longer Used Optimization ● Low Resolved

L-06 ANCHOR Range Disappears Validation ● Low Resolved

L-07 onlyKernel Modifier Discrepancy Validation ● Low Resolved

L-08 Misleading Burn Function Documentation ● Low Acknowledged

L-09 _canBump Early Return Optimization ● Low Resolved

L-10 Duplicated BLV Price Getters Optimization ● Low Acknowledged

L-11 Deadline Set To Block.timestamp Logical Error ● Low Acknowledged

L-12 Misleading Documentation In
getBaselineValue Documentation ● Low Resolved

Findings & Resolutions

9

ID Title Category Severity Status

L-13 Unusable DISCOVERY_LENGTH Superfluous
Code ● Low Resolved

L-14 _canBump Validation Does Not
Round Correctly Rounding ● Low Resolved

L-15 Max Tick Discovery Liquidity
Warning Warning ● Low Acknowledged

L-16 Missing payable On
exactInputSingleVanilla Modifiers ● Low Resolved

L-17 Unnecessary Allowance Optimization ● Low Resolved

L-18 Leverage Can Be Below 1x Warning ● Low Resolved

L-19 Superfluous Comment Superfluous
Code ● Low Resolved

L-20 Inability To Update BToken
Controller Warning ● Low Acknowledged

H-01 | Invalid Remaining Reserves Calculation

Description

The MarketMaking contract verifies if the protocol can bump by simulating an increase in the
blvTick, and later validating some conditions, like bumpedCapacity > circulating.

The bumpedAnchorCapacity is calculated based on the _getAnchorReserves. However, the
bumpedFloorCapacity is mistakenly uses the remainingReserves as follows:

int256 remainingReserves = _getVirtualReserves() + reserve.balanceOf(address(BPOOL));

However, the balance of the BPOOL contains all reserves, as they were all removed from the ranges,
so remainingReserves is actually equal to totalReserves.

Recommendation

Subtract the reserves used to calculate the ANCHOR range to correctly determine how many
reserves remain.

Resolution

Baseline Team: The issue was fixed in line MarketMaking.sol#L354.

10

Category Severity Location Status

Logical Error ● High MarketMaking.sol: 357 Resolved

https://github.com/0xBaseline/baseline-v2/blob/16cd27ab1cbb7fe0aa24f44a9acb89e9e8dab5c3/src/policies/MarketMaking.sol#L354

H-02 | DoS Of Deployment

Description

Deploying with vm.startBroadcast() will lead to each call happening as a separate transaction. This
gives a user who was distributed bTokens the opportunity to interact with the Uniswap pool prior to
the first rebalance occurring.

A malicious user can deploy liquidity below the desired BLV. Then, they can swap to their new
deployed liquidity range.

This will mean the active tick is below the BLV tick. When rebalance() is invoked, it will attempt to set
the lower tick of the anchor range to the BLV tick and the upper tick will be calculated using the
current active tick.

Since the current active tick is below the BLV tick, setTicks() will revert due to InvalidTickRange. This
will DoS the deployment after the tokens are distributed and the contract has been deployed.

Recommendation

Deploy inside a smart contract function, so that the deployment happens atomically.

Resolution

Baseline Team: Acknowledged.

11

Category Severity Location Status

DoS ● High Deployment Acknowledged

PoC

https://github.com/GuardianOrg/baseline-v2-team1/blob/POC_DOS_DEPLOYMENT/test/guardian/pocs/DoSDeployment.sol

H-03 | Extend Interest Stolen

Description

The Interest accrued from the extend function sits in the CreditFacility contract until the fee recipient
removes it with their approval.

However this poses an issue because the _swapExactOut function transfers the entire contract
balance of the CreditFacility to the BPOOL contract.

As a result these fee amounts which are sitting in the CreditFacility contract will be deployed into the
protocol liquidity instead of collectable.

Recommendation

In the extend function, instead of transferring the reserve amount from the user to the CreditFacility
contract, transfer the reserve amount to the fee recipient directly. Furthermore, be sure there are no
other instances where reserves are left in the CreditFacility contract.

Resolution

Baseline Team: The issue was fixed in line CreditFacility.sol#L437.

12

Category Severity Location Status

Logical Error ● High CreditFacility.sol: 438 Resolved

https://github.com/0xBaseline/baseline-v2/blob/16cd27ab1cbb7fe0aa24f44a9acb89e9e8dab5c3/src/policies/CreditFacility.sol#L437

H-04 | All Credit Interests Are Deployed As Liquidity

Description

The CreditFacility _sendReserves function used to keep the interest reserves amount in the
CreditFacility contract so that this amount could be removed by the fee receiver which is approved
for the CreditFacility.

However now, because the removeAllFrom function leaves all removed tokens in the BPOOL
contract, the interest amount is not collected by the protocol and will instead be deployed back into
the liquidity structure.

Recommendation

Use BPOOL.transferToken(reserve, feeRecipient, _interest); in the _sendReserves function.
Additionally, remove the feeRecipient approval logic as it is no longer necessary.

Resolution

Baseline Team: The issue was fixed in line CreditFacility.sol#L548.

13

Category Severity Location Status

Logical Error ● High CreditFacility.sol: 560 Resolved

https://github.com/0xBaseline/baseline-v2/blob/fixed-supply/src/policies/CreditFacility.sol#L548

M-01 | Missing Equality Operator

Description

The _tradingInFloor functions in Policies verify if the active tick is at or below the floor's upper tick.
However, in Brouter, this function only contains <, so the check will succeed when activeTick ==
tickU.

Recommendation

Update the operator to <= so the call reverts when active tick is exactly at the BLV.

Resolution

Baseline Team: Acknowledged.

14

Category Severity Location Status

Logical Error ● Medium Brouter.sol: 299 Acknowledged

M-02 | Outdated Anchor Tick Used In canBump

Description

The canBump function uses an outdated anchorTick which has not been updated to reflect the
current price which the protocol is rebalancing for.

As a result the capacity calculations for the Anchor range are not accurate to what the capacity will
actually be after the rebalance.

This will often result in bumping when bumps should not occur, which will often prevent a rebalance
from occurring since the final capacity invariant cannot be held. Or, more rarely, not allowing bumps
to occur when they ought to be.

Recommendation

Consider updating the anchorTick to the latest that will be used in the rebalance.

Resolution

Baseline Team: Resolved.

15

Category Severity Location Status

Logical Error ● Medium MarketMaking.sol: 340 Resolved

M-03 | Unable To Rebalance Above DISCOVERY_LENGTH

Description

The MarketMaking policy is mainly in charged of rebalancing the liquidity positions, when
canRebalance is true.

Normally, a rebalance will be triggered when price moved outside of the rebalance ticks and its
within a certain range:

bool isWithinRange = activeTick > blvTick & activeTick < anchorTick + DISCOVERY_LENGTH;

However, the DISCOVERY liquidity will range from the anchorTick to the MAX_TICK. This suggests
that rebalance is not possible when price is inside the DISCOVERY but above anchorTick +
DISCOVERY_LENGTH.

Recommendation

Update the withinRange to include all the DISCOVERY range so rebalance is possible when price is at
that range:

bool isWithinRange = activeTick > blvTick & activeTick < anchorTick + MAX_TICKS;

Resolution

Baseline Team: The issue was fixed in line MarketMaking.sol#L201.

16

Category Severity Location Status

Logical Error ● Medium MarketMaking.sol: 202 Resolved

https://github.com/0xBaseline/baseline-v2/blob/16cd27ab1cbb7fe0aa24f44a9acb89e9e8dab5c3/src/policies/MarketMaking.sol#L201

M-04 | Temporary DoS Of openPosition()

Description

The isEth validation checks the balance of the contract instead of the msg.value. A malicious user
can send ether to the Brouter, in order to trigger a refund to LoopFacility when openPosition() is
called.

Since LoopFacility does not have a receive() function, this will cause a call to openPosition() to
revert. The malicious user can then pull their ether out through a swap in the following transaction.

Recommendation

Change the validation for isEth from checking the contract balance to checking the msg.value.

Resolution

Baseline Team: The issue was fixed in line Brouter.sol#L242.

17

Category Severity Location Status

DoS ● Medium Brouter: 233 Resolved

https://github.com/0xBaseline/baseline-v2/blob/b1605f46a8018d199468afda9a195c0604b2dfa8/src/policies/Brouter.sol#L242

M-05 | Capacity Errantly Increased

Description

The CreditFacility allows users to borrow reserves with bAssets as collateral. These reserves will be
retrieved from the Liquidity Ranges.

If there are not enough reserves in the FLOOR, the excess amount will be taken from the ANCHOR.
However, when users repay reserves, these will be added to the FLOOR only.

Due to the fact that there is no interest charged, users can deliberately borrow enough reserves to
remove some from the ANCHOR range and immediately repay.

This will increase the capacity of the system as the reserves that were in the ANCHOR had lower
capacity than if they are valued at the blv. Additionally, this may open arbitrage opportunities, as well
as DoS user actions, as liquidity in the trading range is moved down.

Recommendation

Set interest greater than zero, to disincentivize whales from manipulating the reserves and capacity.
Additionally, consider triggering a rebalance, if possible, to re distribute the reserves where they
belong.

Resolution

Baseline Team: Acknowledged.

18

Category Severity Location Status

Logical Error ● Medium CreditFacility.sol: 356 Acknowledged

M-06 | External Liquidity Causes Trade Reverts

Description

When trading in the floor, liquidity is removed from the floor during a buy in order to improve price
movement.

However, an external user can provide liquidity in the floor range, making the trade still revert. This
revert will prevent swaps that are bringing the price closer to the BLV from executing.

Recommendation

Instead, validate that the price has moved close to the BLV and check that the price is not in the floor
for closePosition().

Resolution

Baseline Team: The issue was fixed in line Brouter.sol#L272.

19

Category Severity Location Status

Logical Error ● Medium Brouter: 266 Resolved

https://github.com/0xBaseline/baseline-v2/blob/b1605f46a8018d199468afda9a195c0604b2dfa8/src/policies/Brouter.sol#L272

M-07 | Rebalance Prevented Near Floor Tick

Description

In the _getACU function when the active pool price is just above the blvTick there will be an overflow
when attempting to cast the result of FullMath.mulDiv(amount1, FixedPoint96.Q96, sqrtRatioBX96 -
sqrtRatioAX96) to a uint128 variable inside of the getAmount0ForLiquidity function.

As a result rebalances are DoS'd when the pool price is in this edge case range.

Recommendation

Be aware of this DoS and consider refactoring the leverage calculations to avoid calculating the ACU
when the price is close to the blvTick and instead returning a default asymptotic value.

Resolution

Baseline Team: Resolved.

20

Category Severity Location Status

DoS ● Medium MarketMaking.sol Resolved

M-08 | Swap With Rebalances Errantly Used

Description

In the closePosition function the exactInputSingle function on the BRouter contract is used which
rebalances before and after the swap.

This does not match the previous behavior of the closePosition function and can prevent users from
repaying their debts because the rebalance function may revert with an BackingInsolvent error.

Recommendation

Use the exactInputSingleVanilla function instead.

Resolution

Baseline Team: The issue was fixed in line LoopFacility.sol#L175.

21

Category Severity Location Status

Logical Error ● Medium LoopFacility.sol: 175 Resolved

https://github.com/0xBaseline/baseline-v2/blob/f9b180a477c59d668e44036d15ad528dca458713/src/policies/LoopFacility.sol#L175

M-09 | Donated Liquidity Not Given To Fee Recipient

Description

In the removeAllFrom the donated liquidity that was not deployed by the protocol is intended to be
transferred to the fee recipient.

However in the case where the ranges are updated and third party liquidity is found in the new
ranges, the following early return is used in the removeAllFrom function:

liquidityToRemove = currentLiquidity; if (liquidityToRemove = 0) return (0,

bAssetFees_, 0, reserveFees_);

In this case the transfers at the end of the removeAllFrom function are not made.

reserve.safeTransfer(feeRecipient, reserveFees_); bAsset.transfer(feeRecipient,

bAssetFees_);

Recommendation

Inside the early return case, be sure to make the same transfers to the feeRecipient.

Resolution

Baseline Team: The issue was fixed in line BPOOL.v1.sol#L218.

22

Category Severity Location Status

Logical Error ● Medium BPOOL.sol: 223 Resolved

https://github.com/0xBaseline/baseline-v2/blob/02fb311c91de8bf9b0143bf923efb06510749ce3/src/modules/BPOOL.v1.sol#L218

M-10 | Failed Liquidity Deployment Due To Insufficient Balance

Description

During the liquidity deployment phase of rebalancing, DISCOVERY liquidity is added first, followed by
ANCHOR liquidity. The threshold liquidity added to DISCOVERY is the minimum of multiple
calculations: uint256(threshold_).min(uint256(bTokenLiquidityMax)).

When the final threshold liquidity is bTokenLiquidityMax, the entire bAsset balance of the BPOOL will
be deployed to the DISCOVERY range during deployLiquidityTo(DISCOVERY), as bTokenLiquidityMax
is calculated using balanceOf(BPOOL).

However, adding liquidity to ANCHOR in the next step also requires some bAssets when activeTick <
anchorTick. Since the entire bAsset balance has already been deployed to the DISCOVERY range,
addReservesTo(ANCHOR) fails during uniswapV3MintCallback due to insufficient balance.

Recommendation

Consider leaving a buffer amount when calculating bTokenLiquidityMax instead of using the entire
balance. This ensures that the contract retains bAssets to add to ANCHOR, even when
bTokenLiquidityMax is deployed to DISCOVERY.

Resolution

Baseline Team: The issue was fixed in line MarketMaking.sol#L472.

23

Category Severity Location Status

DoS ● Medium MarketMaking.sol Resolved

https://github.com/0xBaseline/baseline-v2/blob/f9b180a477c59d668e44036d15ad528dca458713/src/policies/MarketMaking.sol#L472

L-01 | Unused Code

Description
The following code is not used in the current implementation:
• LoopFacility._tradingInFloor()
• BlastClaimer, IUniswapV3Pool, FixedPoint96 import in LOOPS
• debug code (console2.sol, PoolViewerLib.sol)

Recommendation

Remove the unused code or add an implementation for it.

Resolution

Baseline Team: Resolved.

24

Category Severity Location Status

Optimization ● Low Global Resolved

L-02 | Lack Of Reentrancy Validation

Description

_swap() sends ether to the user via call(), which will hand over the execution flow to the receive()
function if it is a smart contract. It is best practice to use reentrancy modifiers when this occurs.

Recommendation

Add reentrancy guard modifiers to the swap functions.

Resolution

Baseline Team: Acknowledged.

25

Category Severity Location Status

Reentrancy ● Low Brouter: 102, 113, 126 & 137 Acknowledged

L-03 | Swaps Allowed To Non-Baseline Pools

Description

_swap() does not validate the fee tier that is passed for a swap. This allows users to perform swaps
with pools that have been created with the same tokens but set to different fee tiers.

Recommendation

Validate the fee of the trade in the _swap() function.

Resolution

Baseline Team: The issue was fixed in line Brouter.sol#L234.

26

Category Severity Location Status

Validation ● Low Brouter: 102, 113, 126 & 137 Resolved

https://github.com/0xBaseline/baseline-v2/blob/b1605f46a8018d199468afda9a195c0604b2dfa8/src/policies/Brouter.sol#L234

L-04 | Superfluous balanceOf Call

Description

The _removeLiquidity contains a call to bAsset.balanceOf(address(BPOOL)); whose return value is
not used.

Recommendation

Remove the balanceOf call.

Resolution

Baseline Team: Resolved.

27

Category Severity Location Status

Optimization ● Low MarketMaking.sol: 270 Resolved

L-05 | Payer Param No Longer Used

Description

The BPOOL contract will always own the reserves and bAssets used to add liquidity to ranges, so in
the uniswapV3MintCallback these tokens are transferred directly to the pool.

Therefore, there is no need to encode the payer or msg.sender during pool.mint as this encoded data
is not longer used.

Recommendation

Send empty data in the last param in pool.mint

Resolution

Baseline Team: Resolved.

28

Category Severity Location Status

Optimization ● Low BPOOL.v1.sol Resolved

L-06 | ANCHOR Range Disappears

Description

The rebalance action can now be executed when more than 8 hours have passed since the last
rebalance, bypassing the other price and range checks.

This allows the ANCHOR range to disappear when the following scenarios are met:

• activeTick = blvTick
• (activeTick < blvTick + 199) & (liquidityA > _getThresholdLiquidity())

Although the first scenario might be expected, the second one might not, as it will create a
DISCOVERY position with reserves.

Recommendation

Consider if this is the expected behavior and prevent rebalances to occur.

Resolution

Baseline Team: Resolved.

29

Category Severity Location Status

Validation ● Low MarketMaking.sol: 315 Resolved

L-07 | onlyKernel Modifier Discrepancy

Description

The onlyKernel modifier prevents external calls to certain functions when Modules are installed or
Policies are activated.

However, this modifier is only used in certain cases, leaving some unprotected functions, like the
configureDependencies in Policies, that can lead to unexpected scenarios.

Recommendation

Consider adding the onlyKernel modifier to the all Module and Policies functions that should only be
called by the Kernel contract.

Resolution

Baseline Team: Resolved.

30

Category Severity Location Status

Validation ● Low Global Resolved

L-08 | Misleading Burn Function

Description

The CREDT module still contains a _burnDefaultedCollateral, but the bAssets are not burned
anymore. Instead, they are transferred to the BPOOL module to be used for the next liquidity
rebalance. Although the function does not actually burn, it can be misleading, as well as its natspec.

Recommendation

Update the _burnDefaultedCollateral function name as well as the comments, and avoid suggesting
a burn

Resolution

Baseline Team: Acknowledged.

31

Category Severity Location Status

Documentation ● Low CREDT.v1.sol Acknowledged

L-09 | _canBump Early Return

Description

The rebalance operation, after removing liquidity, will try to check if the current liquidity structure
accepts a bump, which relies on certain conditions being met at the same time.

One of these conditions is tickDelta > BUMPABLE_PREMIUM which prevents bumps if the tick
premium (difference between the activeTick and the blvTick) is greater than 1500 (default value).

Therefore, to save gas and avoid more calculations, the function should early return with false if this
condition is not met.

Recommendation

Early return false if tickDelta = BUMPABLE_PREMIUM

Resolution

Baseline Team: The issue was fixed in line MarketMaking.sol#L335.

32

Category Severity Location Status

Optimization ● Low MarketMaking.sol: 339 Resolved

https://github.com/0xBaseline/baseline-v2/blob/3250f1c8885d372db19b4e714290523c864e21e7/src/policies/MarketMaking.sol#L335

L-10 | Duplicated BLV Price Getters

Description

Both BPOOL.getBaselineValue, LoopFacility.getBaselineValue() and MarketMaking.getBLV()
calculate the current baseline value price based on the upper tick of the floor.

Although they all return the same value, this can lead to issues in the future if one is updated but not
the others.

Recommendation

Consider having one single source of truth for the blv calculation.

Resolution

Baseline Team: Acknowledged.

33

Category Severity Location Status

Optimization ● Low BPOOL.v1.sol: 272 Acknowledged

L-11 | Deadline Set To Block.timestamp

Description

The Brouter performs swaps in the UniswapV3Pool, used by some Policies. The issue arises when
using block.timestamp as the deadline parameter for these swaps.

A malicious block builder will be able to execute this at any time, when such transaction is useful for
manipulating the price.

Recommendation

Add an optional deadline parameter to functions that routes swaps through the Brouter and use this
instead of block.timestamp for all the swaps.

Resolution

Baseline Team: Acknowledged.

34

Category Severity Location Status

Logical Error ● Low Global Acknowledged

L-12 | Misleading Documentation In getBaselineValue

Description

The getBaselineValue calculates the BToken price at upper tick of the FLOOR range. However, the
documentation mentions Returns the price at the lower tick of the floor position, which is
misleading.

Recommendation

Update the documentation to: Returns the price at the upper tick of the floor position

Resolution

Baseline Team: The issue was fixed in line BPOOL.v1.sol#L271.

35

Category Severity Location Status

Documentation ● Low BPOOL.v1.sol: 271 Resolved

https://github.com/0xBaseline/baseline-v2/blob/3250f1c8885d372db19b4e714290523c864e21e7/src/modules/BPOOL.v1.sol#L271

L-13 | Unusable DISCOVERY_LENGTH

Description

The DISCOVERY_LENGTH value is assignable by the owner address and is used in canBump but
actually has nothing to do with the length of the discovery range as it is hardcoded to the max tick.

Recommendation

Consider either removing the DISCOVERY_LENGTH variable or making the Discovery range
configurable by it.

Resolution

Baseline Team: Resolved.

36

Category Severity Location Status

Superfluous Code ● Low MarketMaking.sol Resolved

L-14 | _canBump Validation Does Not Round Correctly

Description

In the _canBump function there is validation to check if the circulating supply can be absorbed by the
total reserves immediately after increasing the blvTick.

if (totalReserves < circulating.mulWad(getBLV())) {blvTick = T_S; return false;}

This validation multiplies the circulating supply by the BLV price using mulWad, which rounds down.
This does not round in the protocol's favor as it is rounding down the circulating value that the
reserves must cover.

This is in contrast to the same validation which is performed differently in the _removeLiquidity
function.

In the _removeLiquidity function the maxCapacity is exposed to rounding down because it is the
totalReserves divided by the BLV price with divWad which rounds down.

This is the correct way to perform this validation which rounds in favor of being more conservative
about the capacity invariant.

Recommendation

Use the same validation as is performed in the _removeLiquidity which rounds conservatively.

Resolution

Baseline Team: Resolved.

37

Category Severity Location Status

Rounding ● Low MarketMaking.sol: 350 Resolved

uint256 maxCapacity = totalReserves.divWad(getBLV());

if (maxCapacity < circulating) {revert BackingInsolvent();}

L-15 | Max Tick Discovery Liquidity Warning

Description

Since the Discovery liquidity is now deployed to the max tick and the circulating supply is now
limited, the liquidity achievable in the Discovery range will be somewhat limited.

In many cases this is will result in the capping of the threshold liquidity, which may give resistance to
deploying the liquidity structure that is desired.

Recommendation

Be aware of this constraint and be prepared to adjust the discovery range as needed if outcomes are
not as desired.

Resolution

Baseline Team: Acknowledged.

38

Category Severity Location Status

Warning ● Low MarketMaking.sol Acknowledged

L-16 | Missing payable On exactInputSingleVanilla

Description

The exactInputSingleVanilla function does not have the payable keyword, unlike the other three
functions, and therefore cannot perform swaps with the native token.

Recommendation

Add payable to this function as well.

Resolution

Baseline Team: The issue was fixed in line Brouter.sol#L126.

39

Category Severity Location Status

Modifiers ● Low Brouter.sol: 126 Resolved

https://github.com/0xBaseline/baseline-v2/blob/16cd27ab1cbb7fe0aa24f44a9acb89e9e8dab5c3/src/policies/Brouter.sol#L126

L-17 | Unnecessary Allowance

Description

The MarketMaking contract grants approval to BPOOL to spend reserve tokens. However, this
approval is unnecessary, as BPOOL no longer invokes transferFrom after the updates.

Recommendation

Remove floating allowances.

Resolution

Baseline Team: The issue was fixed in line MarketMaking.sol#L115.

40

Category Severity Location Status

Optimization ● Low MarketMaking.sol: 142 Resolved

https://github.com/0xBaseline/baseline-v2/blob/16cd27ab1cbb7fe0aa24f44a9acb89e9e8dab5c3/src/policies/MarketMaking.sol#L115

L-18 | Leverage Can Be Below 1x

Description

In the _getLeverage function the leverage is multiplied by 0.9999 to avoid any rounding up edge
cases. However this allows the leverage to be lower than 1x, which may be unexpected.

Recommendation

Consider enforcing a minimum value of 1e18 for the leverage result.

Resolution

Baseline Team: The issue was fixed in line MarketMaking.sol#L509.

41

Category Severity Location Status

Warning ● Low MarketMaking.sol: 518 Resolved

https://github.com/0xBaseline/baseline-v2/blob/16cd27ab1cbb7fe0aa24f44a9acb89e9e8dab5c3/src/policies/MarketMaking.sol#L509

L-19 | Superfluous Comment

Description

The comment related to spot supply invariant check at lines 410–411 of the MarketMaking contract
still persists, even though the line uint256 spotSupply = getCirculatingSupply() -
LOOPS.totalCollateral() - CREDT.totalCollateralized() has been removed.

Recommendation

Remove the unnecessary comment.

Resolution

Baseline Team: The issue was fixed in line MarketMaking.sol#L407.

42

Category Severity Location Status

Superfluous Code ● Low MarketMaking.sol: 410-411 Resolved

https://github.com/0xBaseline/baseline-v2/blob/16cd27ab1cbb7fe0aa24f44a9acb89e9e8dab5c3/src/policies/MarketMaking.sol#L407

L-20 | Inability To Update BToken Controller

Description

The BToken controller is initialized with the BPOOL address during deployment, which is also set as
the controller address.

The BToken.setController has an access control validation so only the current controller address
(BPOOL) can update it.

However, the only function in BPOOL that can update the controller is the migrateBToken, which is
permissioned and there is no Policy that has the function permission.

Recommendation

Consider adding migrateBToken permission to the policy that should be allowed to call this function.

Resolution

Baseline Team: Acknowledged.

43

Category Severity Location Status

Warning ● Low BPOOL.v1.sol: 253 Acknowledged

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

44

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

45

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

