

Baseline Protocol
27/02/2024

Trust
Security

Smart Contract Audit

Trust Security Baseline Protocol

Executive summary

Findings

Severity Total Fixed Acknowledged

High 4 4 -

Medium 5 5 -

Low 3 3 -

Centralization score

Centralized Decentralized

Signature

Category Financial
assets

Audited file count 10

Lines of Code 1657

Auditor Jeiwan,
100proof

Time period 05-
16/02/2024

4, High

5,
Medium

3, Low

FINDINGS

Trust Security Baseline Protocol

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 4

Versioning 4

Contact 4

INTRODUCTION 5

Scope 5

Repository details 5

About Trust Security 5

About the Auditors 5

Disclaimer 6

Methodology 6

QUALITATIVE ANALYSIS 7

FINDINGS 8

High severity findings 8

TRST-H-1 Debt can be forced on arbitrary users 8

TRST-H-2 Repaying for an arbitrary user can cause a loss of funds 8

TRST-H-3 BaselineFactory.deploy() allows deployment of malicious Uniswap pools 9

TRST-H-4 Credit duration is reduced during credit extension 9

Medium severity findings 11

TRST-M-1 Loss of precision in the current price calculation 11

TRST-M-2 Inaccurate borrow estimation for an account with a credit 11

TRST-M-3 BAsset address cannot be reliably precomputed 12

TRST-M-4 BAsset deployment salt collision allows hijacking of Baseline contract 12

TRST-M-5 Credit interest is increased due to a miscalculation 13

Low severity findings 15

TRST-L-1 bAsset shouldn’t be allowed to change in preAsset 15

TRST-L-2 setFee() should have an upper bound 15

TRST-L-3 Small precision loss in _repay() 16

Additional recommendations 17

TRST-R-1 Allow tokens with decimals other than 18 17

TRST-R-2 Remove unused variables/dead code from contracts 17

TRST-R-3 Only allow fee to be set to fraction of 100% 17

Centralization risks 18

TRST-CR-1 preAsset owner can steal pre-sale funds via a malicious Uniswap router 18

Trust Security Baseline Protocol

TRST-CR-2 Protocol fee can be as big as 100% 18

Trust Security Baseline Protocol

Document properties

Versioning

Version Date Description

0.1 19/02/2024 Client report

0.2 27/02/2024 Mitigation review

Contact

Trust

trust@trust-security.xyz

Trust Security Baseline Protocol

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

• BaselineFactory.sol

• Baseline.sol

• bAsset.sol

• BlastClaimer.sol

• Core.sol

• CreditFacility.sol

• IBlast.sol

• LiquidityManager.sol

• MarketMaking.sol

• preAsset.sol

Repository details

● Repository URL: https://github.com/0xBaseline/baseline-protocol

● Commit hash: 07193a58c3fba14dafac8528713fe2aa48aa0d5c

● Mitigation review commit hash: cb75fd91450b8bb10eb0840c428bca1cdb290bad

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Trust is the leading auditor at competitive auditing

service Code4rena, reported several critical issues to Immunefi bug bounty platform and is

currently a Code4rena judge.

About the Auditors

After spending many years working as a web developer and studying blockchain technologies

in his free time, Jeiwan started his full-time smart contracts security journey in September

2022. Since then, he has participated in more than 50 auditing contests on Code4rena and

Sherlock, where he took multiple Top 5 places competing with the best auditors in the field.

https://github.com/0xBaseline/baseline-protocol

Trust Security Baseline Protocol

Jeiwan is the author of Uniswap V3 Development Book. Thanks to his deep knowledge of

Uniswap, Jeiwan specializes in projects that integrate or extend Uniswap, as well as any other

AMM.

100proof transitioned into smart contract security after many years as a software developer.

He is interested in the application of formal methods to software correctness but believes a

solid practical understanding of security is necessary for them to have any meaningful impact.

Since finding a critical bug in Kyber Network’s Elastic Pools, he has specialized in Uniswap V3-

like concentrated liquidity AMMs.

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

Trust Security Baseline Protocol

Qualitative analysis

Metric Rating Comments

Code complexity

Good Project kept code as

simple as possible,

reducing attack risks

Documentation

Moderate

Project is mostly very well

documented; the code,

however, lacks

documentation.

Best practices

Good Project uses common best

practices to reduce

security risks.

Centralization risks

Moderate

Project is mostly

decentralized and

permissionless.

Trust Security Baseline Protocol

Findings

High severity findings

TRST-H-1 Debt can be forced on arbitrary users
● Category: Access control

● Source: Baseline.sol#L78

● Status: Fixed

Description

The Baseline.borrow() function allows borrowing for an arbitrary user who has approved the

bAsset to the contract: the function transfers bAssets from the caller-specified address

(CreditFacility.sol#L161). Since approving the maximal token amount is a common practice,

any user who has previously approved their bAssets to the contract (e.g. to take a credit) can

be forced into a debt of up to their bAsset balance or the approve amount. Since borrowing

happens at a price below the floor price (due to the interest paid when borrowing), taking a

credit on behalf of another user will force them to lose some amount of funds.

Recommended mitigation

In the Baseline.borrow(), consider disallowing borrowing for an arbitrary address. The function

should create a credit only for the caller.

Team response

Fixed in commit 9804df5.

Mitigation review

Fixed by transferring bAssets from the caller, not from the specified address. Due to how

borrowing is implemented in the protocol, borrowing on behalf of another user (given that

the collateral is paid by the caller) bears no risks for the user.

TRST-H-2 Repaying for an arbitrary user can cause a loss of funds
● Category: Access control

● Source: Baseline.sol#L86

● Status: Fixed

Description

The Baseline.repay() function allows repaying a credit for an arbitrary user address. This is a

common practice in lending protocols to allow repaying debts for someone else. However,

the function pulls the reserve funds from the credit owner, not the caller

(CreditFacility.sol#L208) .

As a result, the function can be used to force a repaying of anyone’s credit, which can result

in a loss profit and/or a partial loss of funds.

https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L78
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L78
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L161
https://github.com/0xBaseline/baseline-protocol/pull/95/commits/9804df5fdc863444a5f6285b928a2ba9f82eecf0
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L86
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L86
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L208

Trust Security Baseline Protocol

Recommended mitigation

In the Baseline.repay(), consider pulling the reserve funds only from the caller, while returning

the collateral funds to the credit owner.

Team response

Fixed in commit 8faabe3.

Mitigation review

Fixed as recommended.

TRST-H-3 BaselineFactory.deploy() allows deployment of malicious Uniswap pools
● Category: Integration issues

● Source: BaselineFactory.sol#L35

● Status: Fixed

Description

When a new Baseline contract is deployed via the BaselineFactory.deploy(), a Uniswap V3 pool

is created via a factory (Baseline.sol#L64-L67). However, the address of the factory contract

that deploys the pool is provided by the user to the BaselineFactory.deploy() function

(BaselineFactory.sol#L35), and it can be an arbitrary address. The protocol doesn’t guarantee

that a provided factory address is an authentic Uniswap factory that deploys authentic

Uniswap V3 pools.

As a result, a malicious actor can deploy (via BaselineFactory) an authentic Baseline contract

that will integrate with a malicious Uniswap V3 pool. Such pool, for example, can act as an

authentic pool and have a function that will allow the malicious actor to withdraw all reserves

from the contract to their address. Since the Baseline is deployed via the official

BaselineFactory it’ll have the authenticity of an official Baseline contract that uses an

authentic Uniswap V3 pool.

Recommended mitigation

Consider making the Uniswap V3 factory address immutable in BaselineFactory. The address

should be chosen by the protocol team to guarantee that the Uniswap V3 pool deployed with

Baseline is not malicious.

Team response

Fixed in commit dbf008c.

Mitigation review

Fixed as recommended.

TRST-H-4 Credit duration is reduced during credit extension
● Category: Logical flaws

● Source: CreditFacility.sol#L369

https://github.com/0xBaseline/baseline-protocol/pull/95/commits/8faabe342326061df91bf5732a920c854e176da6
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/BaselineFactory.sol#L35
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/BaselineFactory.sol#L30
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L64-L67
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/BaselineFactory.sol#L35
https://github.com/0xBaseline/baseline-protocol/pull/76/commits/dbf008ceae4ae65c81c43bff7fafe8380ea378d9
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L369

Trust Security Baseline Protocol

● Status: Fixed

Description

When borrowing, there are multiple scenarios how the credit expiration date can be

computed:

1. If it’s a new credit, its expiration timestamp is computed starting from

block.timestamp (CreditFacility.sol#L362).

2. If an existing credit is increased (without increasing its duration), the expiration

timestamp remains unchanged (CreditFacility.sol#L365-L366).

3. If duration is increased for an existing credit, the old expiration timestamp is increased

by the specified number of days (CreditFacility.sol#L368-L370).

In the latter case, 1 day is subtracted from the old expiration timestamp. However, this

shouldn’t be done since the old credit duration already includes the final day: its timeslot

points at the last second of the day (CreditFacility.sol#L403-L405). Thus, subtracting 1 day

causes an overlapping of the old and the new durations, making the final duration shorter by

1 day.

As a result, extended credits will expire earlier than expected, which might not allow their

owners to repay or re-extend them in time, causing a loss of collateral.

Recommended mitigation

When increasing the duration of an existing credit, consider not subtracting 1 day from the

starting timeslot. The interest for the subtracted 1 day has already been paid when the credit

was created.

Team response

Fixed in commit 7ac067b.

Mitigation review

Fixed as recommended.

https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L362
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L365-L366
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L368-L370
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L403-L405
https://github.com/0xBaseline/baseline-protocol/pull/95/commits/7ac067b9b3470b0881d2a570be78ccb8fe25bf84

Trust Security Baseline Protocol

Medium severity findings

TRST-M-1 Loss of precision in the current price calculation
● Category: Arithmetic errors

● Source: MarketMaking.sol#L288

● Status: Fixed

Description

In the MarketMaking._calculateCapacity() function, the current spot price in the underlying

Uniswap V3 pool is obtained by converting the current tick to a square-root ratio

(MarketMaking.sol#L288). However, ticks cannot be converted to prices without losing

precision because ticks are integers and prices are decimals with high precision. With each

tick being a 0.01% (or 1 basis point) price movement, this results in a price calculation error of

up to 0.01%.

The amount of tokens that can be absorbed by the floor and anchor positions can be slightly

miscalculated, which will impact the rebalancing process, which plays a crucial role in

maintaining the stability of the protocol.

Recommended mitigation

Instead of converting activeTick_ to a price, consider passing and using the current square

root price as returned by the LiquidityManager._getActivePriceTick() function.

Team response

Fixed in commit 316c077.

Mitigation review

Fixed as recommended.

TRST-M-2 Inaccurate borrow estimation for an account with a credit
● Category: Logic flaws

● Source: CreditFacility.sol#L78-L91

● Status: Fixed

Description

The CreditFacility.estimateBorrow() allows users to estimate their credit before borrowing.

However, the function only works for new credits, while actual borrowing allows to increase

and/or extend a credit.

As a result, CreditFacility.estimateBorrow() will return wrong credit principal and interest

when called by a user who already has an open credit. Specifically, it returns wrong values

when used to compute the extension or an increase of a credit.

Recommended mitigation

In the CreditFacility.estimateBorrow() function, consider taking into account the callers credit

account and copying the principal and interest computations from the CreditFacility._borrow()

https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L288
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L279
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L288
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/LiquidityManager.sol#L45
https://github.com/0xBaseline/baseline-protocol/pull/94/commits/316c077cc5f6b3e8c51e92743b71bf7d97fe61fa
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L78-L91
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L78

Trust Security Baseline Protocol

function. To avoid the code duplication, CreditFacility._borrow() can call

CreditFacility.estimateBorrow() for the credit calculations.

Team response

Fixed in commit e898bb8.

Mitigation review

Fixed as recommended.

TRST-M-3 BAsset address cannot be reliably precomputed
● Category: Address derivation

● Source: BaselineFactory.sol#L46, Baseline.sol#L56

● Status: Fixed

Description

The distribution of BAssets in return for the funds collected during the pre-sale phase requires

the precomputing of the BAsset address before the Baseline contract is deployed

(preAsset.sol#L164-L168). However, the address cannot be reliably precomputed because its

derivation includes a CREATE opcode address derivation.

The BAsset token is deployed when the Baseline is deployed (Baseline.sol#L55-L56). This

deployment uses the CREATE2 opcode with a salt to guarantee a deterministic address

derivation process. As per EIP-1014, the preimage includes the deployer’s address, which is

the address of the Baseline contract. However, the contract’s address is not deterministic: it’s

deployed via BaselineFactory.deploy() using the CREATE opcode, which address derivation

process depends on the deployment nonce of the deployer. Since anyone is allowed to deploy

Baseline contracts via BaselineFactory.deploy(), there’s no way to guarantee that the

precomputed BAsset address will remain correct by the time the distribution of BAssets

happens.

As a result, deploying and initializing a Baseline contract with a pre-sale phase may result in a

revert or cause a distribution of wrong BAssets.

Recommended mitigation

When deploying Baseline contract via BaselineFactory.deploy(), consider using the CREATE2

opcode with the same salt that’s used to deploy BAsset.

Team response

Fixed in commit dbf008c.

Mitigation review

Fixed as recommended.

TRST-M-4 BAsset deployment salt collision allows hijacking of Baseline contract
● Category: Frontrunning attacks

https://github.com/0xBaseline/baseline-protocol/pull/95/commits/e898bb81f63016ddc4f0fd487192298a4084050e
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/BaselineFactory.sol#L46
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L56
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/preAsset.sol#L164-L168
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L55-L56
https://eips.ethereum.org/EIPS/eip-1014
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/BaselineFactory.sol#L46
https://github.com/0xBaseline/baseline-protocol/pull/76/commits/dbf008ceae4ae65c81c43bff7fafe8380ea378d9

Trust Security Baseline Protocol

● Source: Baseline.sol#L56

● Status: Fixed

Description

When deploying a Baseline contract via the BaselineFactory.deploy(), a salt parameter is

specified by the caller (BaselineFactory.sol#L34) to derivate a unique and pre-computed

address for the BAsset contract (Baseline.sol#L56). Since the BaselineFactory.deploy() can be

called by anyone and since the salt in the BAsset deployment is used as is, there’s a possibility

of salt collisions.

When a salt collision happens accidentally, the Baseline constructor will revert because

there’ll already be a Uniswap V3 pool for the pair of tokens (Baseline.sol#L64-L67).

However, there’s also a possibility of a salt being leaked or intercepted from a well-

intentioned deployer (e.g. a team that deploys a Baseline contract with a presale phase that

has collected some user funds). The salt can also be hijacked directly in public mempool

deployments. In this scenario, a malicious actor can:

1. set their address as the fee receiver (Baseline.sol#L58) or the Blast yield claimer

(Baseline.sol#L70);

2. set a different initial tick (MarketMaking.sol#L35-L40) and/or a different initial supply

of bAssets (MarketMaking.sol#L42-L44) to disrupt the contract;

3. specify a malicious router address to steal the presale funds during the swapping

(MarketMaking.sol#L50-L63);

Recommended mitigation

In the BaselineFactory.deploy() function, consider concatenating the user-specified salt with

the address of the sender, and using the resulting salt in the BAsset deployment. This will

make off-chain BAsset address derivation slightly more complicated (it’ll need to concatenate

the deployer’s address) but it’ll protect from salt collisions.

Team response

Fixed in commit dbf008c.

Mitigation review

Fixed as recommended.

TRST-M-5 Credit interest is increased due to a miscalculation
● Category: Arithmetic errors

● Source: CreditFacility.sol#L99

● Status: Fixed

Description

When computing the interest amount of a credit, the interest percentage is applied to the

entire credit amount (CreditFacility.sol#L99). However, this amount is later split into the

principal and the interest of the credit (CreditFacility.sol#L138). As a result, the interest

amount, in addition to the principal, is subject to the interest fee, which causes an

https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L56
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/BaselineFactory.sol#L30
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/BaselineFactory.sol#L34
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L56
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L64-L67
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L58
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/Baseline.sol#L70
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L35-L40
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L42-L44
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L50-L63
https://github.com/0xBaseline/baseline-protocol/pull/76/commits/dbf008ceae4ae65c81c43bff7fafe8380ea378d9
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L99
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L99
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/CreditFacility.sol#L138

Trust Security Baseline Protocol

overcharging of credit holders. The actual annual interest is higher (~4.16%) than the expected

one (~4%).

Recommended mitigation

In the CreditFacility.getInterest() function, consider applying INTEREST_PER_DIEM as the

reverse percentage, to compute the correct interest amount. The credit_ argument should be

seen as the after-interest credit size (which is the credit principal + the interest). The interest

should be taken only on the principal part and should make the difference between credit_

and the before-interest credit size (which is the credit principal).

Additionally, consider improving the tests to ensure that this invariant holds true: the ratio of

the interest over the principal of a credit should always be equal the ~4% annual interest rate.

Team response

Fixed in commit 5b3cf46.

Mitigation review

Code documentation was updated to reflect the actual interest rate. The interest is still

charged on the entire credit amount.

https://github.com/0xBaseline/baseline-protocol/commit/5b3cf46c752d386d15e696149ae870204c00a8c8

Trust Security Baseline Protocol

Low severity findings

TRST-L-1 bAsset shouldn’t be allowed to change in preAsset
● Category: Validation issues

● Source: preAsset.sol#L166

● Status: Fixed

Description

The preAsset.setBAsset() allows setting and changing the BAsset address at any time.

However, this shouldn’t be allowed because the address is used during claiming: using the

preAsset.claim() function, pre-sale buyers can claim their share of BAsset. If the address has

been changed to a different one, or has been set to a wrong address, pre-sale buyers will

receive a wrong token or won’t be able to claim their share of the correct BAsset.

Recommended mitigation

In the preAsset.setBAsset() function, consider reverting if the bAsset address is not the zero

address. This change needs to be implemented after solidifying Baseline and BAsset

deployments as outlined in other findings in the report. There should never be the need to

change the address once it was set.

Team response

Fixed in commit dbf008c.

Mitigation review

Fixed as recommended.

TRST-L-2 setFee() should have an upper bound
● Category: Input validation

● Source: BaselineFactory.sol#L73-77

● Status: Fixed

Description

Setting the fee to greater than 10000 will cause function shift() to revert due to an arithmetic

underflow on MarketMaking.sol#L50. At the very least the new value should be validated to

be less than 10000, and perhaps be set to a much lower value. (See recommendation TRST-R-

3).

Recommended mitigation

Validate input.

Team response

Fixed in commit dbf008c.

Mitigation review

Fixed by disallowing setting a fee greater than MAX_FEE.

https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/preAsset.sol#L166
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/preAsset.sol#L165
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/preAsset.sol#L93
https://github.com/0xBaseline/baseline-protocol/pull/76/commits/dbf008ceae4ae65c81c43bff7fafe8380ea378d9
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/BaselineFactory.sol#L73-L77
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L150
https://github.com/0xBaseline/baseline-protocol/pull/76/commits/dbf008ceae4ae65c81c43bff7fafe8380ea378d9

Trust Security Baseline Protocol

TRST-L-3 Small precision loss in _repay()
● Category: Precision loss errors

● Source: CreditFacility.sol#L186-187

● Status: Fixed

Description

A small precision loss occurs to a repayer's detriment because of division before multiplication

in the line described.

Recommended mitigation

Remove local variable proportion and modify code to be

uint256 bAssetsReturned = currentAccount.collateral.mulWad(reservesIn_).divWad(totalOwed);

Team response

Fixed in commit ae05f13.

Mitigation review

Fixed as recommended.

https://github.com/0xBaseline/baseline-protocol/blob/b1bfa7313ac2bb17525c832395f14f40712b0783/src/components/CreditFacility.sol#L186-L187
https://github.com/0xBaseline/baseline-protocol/pull/95/commits/ae05f13f2c1c3e7df72e8301cff68283279bdb40

Trust Security Baseline Protocol

Additional recommendations

TRST-R-1 Allow tokens with decimals other than 18

Given that BaselineFactory is permissionless it is recommended that Baseline contracts are

modified to handle ERC-20 tokens with decimals other than 18 decimals.

TRST-R-2 Remove unused variables/dead code from contracts

There were a number of unused variables and dead code in the contracts audited which could

be removed.

● MarketMaking.sol#L225, MarketMaking.sol#L242-L245 - bAssetsFLOAT is unused.

● MarketMaking.sol#L124 - Duplicate line.

● Core.sol#L102 – getCirculatingSupply() is marked as internal.

● preAsset.sol#L30 - Unused event.

● LiquidityManager.sol#L138 – removeUsingBAssets() is unused.

● LiquidityManager.sol#L262-L274 - _getLiquidity() unused

TRST-R-3 Only allow fee to be set to fraction of 100%

If BaselineFactory.setFee is used to set the fee to 100% then then brs for the Baseline

instance will receive zero fee (see MarketMaking.sol#L150). Consider setting a maximum fee

that is some fraction less than 100% so that deployers of Baseline know the minimum fees

they receive.

https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L225
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L242-L245
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L124
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/Core.sol#L102
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/preAsset.sol#L30
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/LiquidityManager.sol#L138
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/LiquidityManager.sol#L262-L274
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L150

Trust Security Baseline Protocol

Centralization risks

TRST-CR-1 preAsset owner can steal pre-sale funds via a malicious Uniswap router

During Baseline contract deployment and initialization, the pre-sale funds are swapped for the

bAsset tokens via the caller-provided router address (BaselineFactory.sol#L39,

MarketMaking.sol#L50-L52). This allows the deployer (who’s also the owner of preAsset, and

thus the party that runs the pre-sale campaign), to specify the address of a malicious router

that, instead of swapping funds, transfers them to the malicious deployer.

This allows malicious actors run preliminary sales of bAssets, promising to deploy a Baseline

contract and let pre-sale buyer be first buyers, eventually steal all funds collected during the

pre-sale phase.

Team response

Fixed in commit dbf008c.

Mitigation review

The risk was mitigated by making the router address immutable in the BaselineFactory

contract. The address is chosen by the Baseline protocol team and cannot be changed by a

Baseline contract deployer.

TRST-CR-2 Protocol fee can be as big as 100%

The Baseline protocol team can set a protocol fee via the BaselineFactory.setBrs() and

BaselineFactory.setFee() functions. The fee is collected from all Baseline contracts deployed

via the official BaselineFactory contract when shifting happens and is subtracted from the

fee collected by Baseline contract deployers (MarketMaking.sol#L137-L148). Since the

maximal protocol fee is set to 100% (BaselineFactory.sol#L15), the Baseline protocol team

can take the entire liquidity surplus fee from all deployed Baseline contracts, leaving their

deployers without the profit generated by the fees.

https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/BaselineFactory.sol#L39
https://github.com/0xBaseline/baseline-protocol/blob/07193a58c3fba14dafac8528713fe2aa48aa0d5c/src/components/MarketMaking.sol#L50-L52
https://github.com/0xBaseline/baseline-protocol/pull/76/commits/dbf008ceae4ae65c81c43bff7fafe8380ea378d9
https://github.com/0xBaseline/baseline-protocol/blob/cb75fd91450b8bb10eb0840c428bca1cdb290bad/src/BaselineFactory.sol#L94
https://github.com/0xBaseline/baseline-protocol/blob/cb75fd91450b8bb10eb0840c428bca1cdb290bad/src/BaselineFactory.sol#L100
https://github.com/0xBaseline/baseline-protocol/blob/cb75fd91450b8bb10eb0840c428bca1cdb290bad/src/components/MarketMaking.sol#L137-L148
https://github.com/0xBaseline/baseline-protocol/blob/cb75fd91450b8bb10eb0840c428bca1cdb290bad/src/BaselineFactory.sol#L15

		2024-02-27T21:12:15+0200
	Trust

