

Summary
 Audit Firm Guardian

 Prepared By Daniel Gelfand, Owen Thurm, Wafflemakr, Giraffe, Osman Ozdemir

 Client Firm Baseline

 Final Report Date June 17, 2024

Audit Summary

Baseline engaged Guardian to review the security of its concentrated liquidity protocol, supporting a

baseline value for its YES token. From the 27th of May to the 6th of June, a team of 5 auditors

reviewed the source code in scope. All findings have been recorded in the following report.

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors,

refer to the complete audit report below.

🔗 Blockchain network: Blast

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/Baseline-PoCs/tree/main
2

https://github.com/guardianaudits
https://github.com/GuardianAudits/Baseline-PoCs/tree/main

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Findings & Resolutions …………..…………………………….……………………… 7

Addendum

Disclaimer …………………………………………………………………..…………..… 38

About Guardian Audits ………………………………..………………………………… 39

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Baseline Markets

Language Solidity

Codebase https://github.com/0xBaseline/baseline-v2

Commit(s) Initial: a37d09ec996318db14cb48e05b916c611b1459f2
Final: 102c7a3abcd34b3c1f97efd400e3a7af4afbaf6b

Delivery Date June 17th, 2024

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 0 0 0 0 0 0

 ● High 12 0 0 4 0 8

 ● Medium 6 0 0 4 0 2

 ● Low 10 0 0 0 0 10

https://github.com/0xBaseline/baseline-v2

5

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ● Critical ● High ● Medium

Likelihood: Medium ● High ● Medium ● Low

Likelihood: Low ● Medium ● Low ● Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core
. functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected.
. The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is
. notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,
. and the cost of the attack is relatively low compared to the amount gained or the
. disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.

6

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

Findings & Resolutions

7

ID Title Category Severity Status

H-01 DoS Via External Liquidity By
Predicting Positions DoS ● High Resolved

H-02 Slide Allows Anchor To Become
Larger Than Discovery Logical Error ● High Resolved

H-03 getLiquidityForReserve DoS DoS ● High Resolved

H-04 Leverage And Deleverage Are
Sandwhichable

Sandwhich
Attack ● High Acknowledged

H-05 removeAllFrom DoS With
External Liquidity DoS ● High Resolved

H-06 Migration Cannot Be Done DoS ● High Resolved

H-07 Premium Compounding Is
Incorrect Logical Error ● High Resolved

H-08 bAsset Shorts Can Make A
Guaranteed Profit Gaming ● High Acknowledged

H-09 Deleverage Can Break Through
Floor Tick Logical Error ● High Resolved

H-10 Borrows In The Floor Invalidate
Baseline Value Logical Error ● High Resolved

H-11 Shorts Profit Because Of Fixed
Anchor Width Gaming ● High Acknowledged

H-12 Anchor Liquidity Can Be
Removed Logical Error ● High Acknowledged

M-01 Launch Allows For Anchor Larger
Than Target Width Logical Error ● Medium Resolved

Findings & Resolutions

8

ID Title Category Severity Status

M-02 Floor Liquidity And Reserves
Decrease After Sweep Logical Error ● Medium Acknowledged

M-03 Swap Fees Included In
Circulating Supply Logical Error ● Medium Acknowledged

M-04 Interest Free Credits Intra-Day Gaming ● Medium Resolved

M-05 Extra Interest Charged When
Extending Credit Logical Error ● Medium Acknowledged

M-06 Decrease Position Prevented Logical Error ● Medium Acknowledged

L-01 getLiquidityForReserves
Function Edge Case Not Handled Logical Error ● Low Resolved

L-02 Incorrect Comment Documentation ● Low Resolved

L-03 Superfluous Capacity Calculation Optimization ● Low Resolved

L-04 Unused LIQUIDITY_THICKNESS
Variable Optimization ● Low Resolved

L-05 Potentially Dangerous
liquidityToRemove Assignment Best Practices ● Low Resolved

L-06 Lack Of safeTransfer Best Practices ● Low Resolved

L-07 Outdated Comment Documentation ● Low Resolved

L-08 Unused State Variables Superfluous
Code ● Low Resolved

Findings & Resolutions

9

ID Title Category Severity Status

L-09 Inaccurate Return Value Name Best Practices ● Low Resolved

L-10 Change In Credit On Repay Does
Not Match Change In Reserves Documentation ● Low Resolved

H-01 | DoS Via External Liquidity By Predicting Positions

Description

Users adding external liquidity to the protocol's positions should not affect the market making
operations, as the liquidity for each range is tracked by the getLiquidity mapping in the BPOOL
contract storage.

The issue relies on the way this mapping is updated after an operation completes. When using
addReservesTo or addLiquidityTo this mapping will be updated with the new real position liquidity,
including externally added liquidity.

An attacker can DoS the sweep operation by following these steps:

1. Add ext liquidity to the projected ANCHOR range after a bump (lowerTick + 1 TS, upperTick).
2. Execute bump(), now the ANCHOR range is the same as the projected one, which we just
maliciously added liquidity to.
3. Now the addLiquidityTo function call for the ANCHOR range records the malicious liquidity as
belonging to the system.
4. sweep now reverts with underflow.

Recommendation

Remove any liquidity that is sitting in positions that will be used, but aren’t currently, and add this
amount to the bufferedReserves value.

Resolution

Baseline Team: The issue was resolved in PR#90.

10

Category Severity Location Status

DoS ● High Global Resolved

PoC

https://github.com/0xBaseline/baseline-v2/pull/90
https://github.com/GuardianAudits/baseline-team-1-pocs/pull/18

H-02 | Slide Allows Anchor To Exceed Discovery

Description

When removing and adding back liquidity to the anchor position in the slide function, the
anchorReserves are tracked and added back to the adjusted anchor position.

However the anchor position has moved leftwards after the slide, therefore the liquidity for the
anchor position will increase as the reserves are maintained.

As a result, since the new discovery liquidity cannot increase past the old discovery liquidity, the
protocol can enter a state where the anchor liquidity is greater than the discovery liquidity.

Recommendation

Consider the following resolution options:

• No longer require the new discoveryL ≤ old discoveryL
• Switch back to maintaining the liquidity for the anchor, rather than the reserves

Resolution

Baseline Team: The issue was resolved in
PR#files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R3
14.

11

Category Severity Location Status

Logical Error ● High MarketMaking.sol: 305 Resolved

https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314
https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314

H-03 | getLiquidityForReserve DoS

Description

In the getLiquidityForReserves function there is no validation that the lower price and upper price
provided to the getLiquidityForAmount1 function are not equal. This is possible either with an anchor
range that has no width or when the active price is exactly that of the lower tick price for a range.
This behavior results in a DoS of several key functionalities of the system when these edge cases
are hit.

Recommendation

Implement the following validation such that the upperPrice can never be less than or equal to the
lower price:

Resolution

Baseline Team: Resolved.
12

Category Severity Location Status

DoS ● High BPOOL.v1.sol: 318 Resolved

function getLiquidityForReserves(

 uint160 _sqrtPriceL,

 uint160 _sqrtPriceU,

 uint256 *reserves

) public view returns (uint128 liquidity*) {

 (uint160 sqrtPriceA,,,,,,) = pool.slot0();

 uint160 upperPrice = min(_sqrtPriceU, sqrtPriceA);

 if (upperPrice <= _sqrtPriceL) { return 0; }

 liquidity_ = LiquidityAmounts.getLiquidityForAmount1(

 _sqrtPriceL,

 upperPrice,

 _reserves

);

}

H-04 | Leverage And Deleverage Are Sandwhichable

Description

In the leverage and deleverage functions traders flash borrow and repay using a swap where the
maxAmountIn is the borrowed amount for borrows and the unlocked collateral amount for
repayments.

This allows malicious actors to frontrun these actions and push the price far enough such that these
limits are hit. In the case of borrowing, this leaves the borrower with no funds received from the
action as the reservesNeeded can be push to the maximum of the entire newPrincipal_.

Recommendation

Allow the user to configure an amountInMaximum themselves, and do not allow this
amountInMaximum to be greater than the borrowed amount for borrows and the unlocked collateral
amount for repayments.

Additionally, consider allowing the user to configure the sqrtPriceLimitX96 and deadline on the swap
for additional MEV protection.

Resolution

Baseline Team:As the original deployment is planned for Blast this is not an immediate issue, but will
be addressed before subsequent chains are supported.

13

Category Severity Location Status

Sandwhich Attack ● High CreditFacility.sol: 228, 324 Acknowledged

H-05 | removeAllFrom DoS With External Liquidity

Description

In the removeAllFrom function, the function is short circuited if there is 0 liquidityToRemove,
however this value is based upon the amount that is deployed in Uniswap.

Therefore a malicious actor may add to this amount in order to stop this early return check from
triggering when the getLiquidity mapping reports that there is no liquidity deployed there for the
system.

In this scenario the function execution continues on to remove all of the attacker’s malicious liquidity
from the range and then attempts to remove 0 liquidity from the range after it has been depleted.
This second attempt to remove liquidity will revert with the NP error from Uniswap.

Recommendation

Add a second early return case right before the _removeLiquidity invocation:

if (liquidityToRemove == 0) return (0, bAssetFees_, 0, reserveFees_);

Resolution

Baseline Team: Resolved.

14

Category Severity Location Status

DoS ● High BPOOL.sol: 226 Resolved

H-06 | Migration Cannot Be Done

Description

During the migration process, the owner will construct the initial distribution of spot and credits and
it will be done with allocate function. This can only be called before the pool is launched, and the
pool will be deployed later.

Users might have both spot and credit to be distributed. But a user can also have only spot or only
credit. However, the check that ensures the allocation is not empty is incorrect, and the allocate
function will revert if a user has only spot or only credit.

The whole migration process will be disrupted even if just one user has only spot or only credit.

Recommendation

Change this line

if (_spot[i] == 0 || _collateral[i] == 0) revert InvalidAllocation();

to this:

if (_spot[i] == 0 && _collateral[i] == 0) revert InvalidAllocation();

Resolution

Baseline Team: The issue was resolved in commit b083ad0.

15

Category Severity Location Status

DoS ● High BaselineInit.sol: 155 Resolved

https://github.com/0xBaseline/baseline-v2/pull/100/commits/b083ad04fb6b73d5ede6d97c0b50509cb7c93da5

H-07 | Premium Compounding Is Incorrect

Description

The protocol deploys liquidity to ranges based on a liquidity premium and this premium supposed to
be compounding when the difference between the activeTick and the floorTickL increases.

However, due to incorrect usage of the powWad in the getCurrentThreshold function, premium
decreases instead of increasing. The reason of this behaviour is the numerator (1e16) in the formula
is smaller than 1e18 and it causes result to decrease in every power.

As a result of this, all liquidity managements in sweep and slide will be incorrect, and the maximum
liquidity in discovery range will never pass 1.1 * anchor liquidity during these operations.

Recommendation

Ensure the formula compounds the premium in a positive way while using the powWad, while being
sure to implement the correct test coverage for the liquidity threshold, as this bug was missed by the
existing testing coverage.

Resolution

Baseline Team: Resolved.

16

Category Severity Location Status

Logical Error ● High MarketMaking.sol: 365-366 Resolved

PoC

https://github.com/GuardianAudits/baseline-team-2-pocs/pull/10

H-08 | bAsset Shorts Can Make A Guaranteed Profit

Description

In the Baseline V2 system it is possible for a user to arbitrage the system in order to make
guaranteed profit on a short.

This arbitrage can occur with the following actions:

1. Bob borrows X bAssets from Alice
2. Bob buys Y bAssets to move the anchor up after sweeping
3. Bob sells Y bAssets and achieves a lower pool price than before his buy because:
1. The anchor has moved up, meaning there is less capacity for the same amount of liquidity (though
in many cases this is offset by discovery surplus)
2. On his buy he was buying in the discovery (higher liquidity) and on his sell he was selling in the
anchor (lower liquidity)
4. Slide moves the discovery liquidity back down so that Bob is able to buy the bAssets back at a
lower average price, due to higher liquidity at a lower price.
5. Bob can pay back the bAssets he borrowed from Alice while the bAsset price is lower than when
he borrowed, representing a profitable short.
Bob has made a guaranteed profit of the delta on this short.

Recommendation

Consider restructuring the way liquidity is managed in the Baseline system, such that there are no
immediate large liquidity shifts which can be arbitraged in this way.

Resolution

Baseline Team: In a future iteration a gradual liquidity shift will be implemented.

17

Category Severity Location Status

Gaming ● High Global Acknowledged

PoC

https://github.com/GuardianAudits/baseline-team-1-pocs/blob/POC_ARB_ATTACK_FULL/test/guardian/pocs/arbAttack.t.sol

H-09 | Deleverage Can Break Through Floor Tick

Description

When deleveraging an account, the floor tick can be breached because the account’s borrowed
reserves have not yet been added to the floor tick, therefore the capacity cannot handle the flash
swap — which assumes there is enough liquidity to sell the bAsset collateral before the borrowed
reserves have been re-added.

Recommendation

Consider adding a requirement to the deleverage function that the existing liquidity structure, not
including the virtual floor liquidity, can comfortably handle the sell of the bAsset collateral.
Otherwise remove the deleverage feature and require users to deleverage manually, or implement a
periphery contract which performs naive deleverages, without flash swapping, on behalf of the user.

Resolution

Baseline Team: The issue was resolved in PR#files.

18

Category Severity Location Status

Logical Error ● High CreditFacility.sol: 324 Resolved

https://github.com/0xBaseline/baseline-v2/pull/101/files

H-10 | Borrows In The Floor Invalidate Baseline Value

Description

Upon borrowing reserves are transferred out of the floor position and are accounted for in the virtual
reserves. When a borrow occurs within the floor position, the reserves removed from the floor will
not contribute towards the floor liquidity, therefore not requiring additional reserves to enter the floor
upon swaps which move the price upwards out of the floor.

As a result, when reserves are moved into the virtual reserves and price moves upwards out of the
floor, the virtual floor reserves are increasingly stretched wider across the floor. As a result the virtual
floor reserves offer a smaller amount of liquidity and capacity as the price increases.

This can lead to an invalidation of the capacity invariant of the system, which ultimately invalidates
the baseline value of the bAsset.

Recommendation

Implement validation in the _leverage function such that if the price were to rise to the upper tick of
the floor and the capacity invariant would be invalidated, the borrow reverts. Be sure that this
validation ignores any capacity gain that would come as a result of additional reserves in the Floor
as price rises.

Additional reserves that would enter the floor as price increases must be ignored as they can mask
an invalidation of the capacity invariant that would occur at an intermediate tick before the upper tick
of the Floor.

Resolution

Baseline Team: The recommendation was implemented in commit 102c7a.

19

Category Severity Location Status

DoS ● High Global Resolved

https://github.com/0xBaseline/baseline-v2/commit/102c7a3abcd34b3c1f97efd400e3a7af4afbaf6b

H-11 | Shorts Profit Because Of Fixed Anchor Width

Description

In the updated Baseline V2 system the anchor is now limited to a distinct maximum width. This
introduces an arbitrage whereby shorts can make a guaranteed profit by moving price into the floor,
over the liquidity gap between the anchor and floor, rebalancing liquidity to fill in the gap, and buying
bAsset tokens back at a lower price as the liquidity for the discovery has filled in the previous gap in
the liquidity structure.

Recommendation

Consider removing the maximum width to reduce the severity of this arbitrage. Otherwise be aware
of this potential gaming and consider reducing the discovery liquidity further when it moves in to fill
a previous gap — thereby reducing the profitability of this manipulation.

Resolution

Baseline Team: Acknowledged.

20

Category Severity Location Status

Gaming ● High Global Acknowledged

PoC

https://github.com/GuardianAudits/baseline-team-1-pocs/pull/20

H-12 | Anchor Liquidity Can Be Removed

Description

In the slide function the anchor position is allocated based on the reserves of the previous anchor.
However the previous anchor may have zero reserves, since it is capped to a maximum width, and
the price is able to go below the anchor, between the gap if another actor creates an outside
position.

As a result, the slide function will read that the anchor has 0 reserves and assign the new anchor to
have 0 reserves and thus 0 liquidity.

Recommendation

Consider adopting a liquidity based approach to assigning the anchor position in slide rather than a
reserves based approach.

Resolution

Baseline Team: Acknowledged.

21

Category Severity Location Status

Logical Error ● High MarketMaking.sol: 305 Acknowledged

M-01 | Launch Allows For Anchor Larger Than Target
Width

Description

In the launch function the anchor position can be more than 10 tick spacings wide as the setTicks
call for the anchor position assigns the lower tick as the floor tick + one tick spacing, and the upper
tick as the even tick spacing ahead of the active tick.

Recommendation

Limit the anchor position to have a lower of max(_floorTickL + T_S, activeTS - ANCHOR_WIDTH*).*

Resolution

Baseline Team: The issue was resolved in PR#92.

22

Category Severity Location Status

Logical Error ● Medium BaselineInit.sol: 183 Resolved

https://github.com/0xBaseline/baseline-v2/pull/92

M-02 | Floor Reserves Decrease After Sweep

Description

In the sweep function the liquidity for the anchor position is maintained, however the anchor position
moves higher. Therefore more reserves will be required to maintain the same liquidity for the anchor
position.

Therefore if there is not enough profit from the discovery position to overshadow this discrepancy,
reserves will be taken from the floor to sustain the anchor liquidity while moving the anchor up.
This may be unexpected as it can unnecessarily reduce capacity by moving reserves up from the
floor position to the anchor.

Recommendation

Consider implementing the sweep function such that it maintains the reserves of the anchor position
rather than the liquidity of the anchor position with the implementation listed below.
However if using this implementation be aware that this has a trade off, where the liquidity of the
anchor position can now reduce upon sweeping, though by a trivial amount.

It may ultimately be fine to acknowledge this issue and keep the existing implementation as a
scenario which causes more than a 10,000 wei liquidity difference has not been identified.

Resolution

Baseline Team: Acknowledged.

23

Category Severity Location Status

Logical Error ● Medium MarketMaking.sol Acknowledged

M-03 | Swap Fees Included In Circulating Supply

Description

The protocol deploys liquidity to Uniswap and earns fees in both reserve token and bAsset. The
protocol owned bAssets and earned bAsset fees are not intended to be part of the circulating supply.

However, swap fees in bAsset are calculated as a part of the circulating supply during bump, sweep
and slide. The reason of this is circulating assets is calculated with bAssetsCirculating =
BPOOL.totalSupply() - BPOOL.balanceOf(address(BPOOL));.

Previously, bAsset fees were in the BPOOL and they were excluded while subtracting the balance of
BPOOL. But after remediations, those fees are in the MarketMaking contract and not excluded.
The newly issued tokens during bump is calculated based on the bAssetsCirculating, and more
tokens will be issued due to this.

Recommendation

Consider subtracting the fees stored in the marketMaking contract while calculating
bAssetsCirculating.

Resolution

Baseline Team: Acknowledged.

24

Category Severity Location Status

Logical Error ● Medium MarketMaking.sol Acknowledged

M-04 | Interest Free Credits Intra-Day

Description

The getTimeslot function returns the unix timestamp at the end of the day as today, and this is used
while calculating daily interests during credit borrowing.
For example, when the current time is 14:05:00, today is considered as 23:59:59. Because of today is
considered as the end of the day, the time between 23:59:59 and the exact borrow time are interest
free.

If a user gets a credit on June 1st at 00:00:01 for only 1 day:

• Today is June 1st 23:59:59
• Credit end time is June 2nd 23:59:59

User will basically get 2 days credit by paying only 1 day interest.

Recommendation

Consider adding a day to the newExpiry_ when first initializing a loan to account for the remainder of
the current day. Otherwise, clearly document this behavior to users.

Resolution

Baseline Team: The issue was resolved in commit 59118f1.

25

Category Severity Location Status

Gaming ● Medium TimeslotLib.sol: 8 Resolved

https://github.com/0xBaseline/baseline-v2/pull/89/commits/59118f124098f49259894ade1ca97504a099defb

M-05 | Extra Interest Charged When Extending Credit

Description

The remediation of M-H-03 is performed via adding current day to remaining days when a user
extends their credit. However, the parent finding was only causing problem when a new credit is
issued with 0 added days in the last day.

Current remediation charges additional one day credit when users extend their credit regardless of
when the extension is performed.

Recommendation

Consider not allowing users to borrow more in the last day with 0 added days to fix the parent
finding, rather than adding 1 day during every credit extension.

Otherwise, clearly document this behavior to users.

Resolution

Baseline Team: Acknowledged.

26

Category Severity Location Status

Logical Error ● Medium CreditFacility.sol: 482 Acknowledged

M-06 | Decrease Position Prevented

Description

The anchor and floor positions can be disjoint, and price may be between the two positions. When a
user attempts to decreasePosition, the floor reserves will be removed before the swap.

If price is between the two positions, Uniswap will revert during the swap since there is no liquidity
below the anchor as the floor was removed temporarily. Consequently, the user will be unable to
decreasePosition and unwind their leverage.

Recommendation

Sliding will correct this case, monitor such situations and slide as necessary.

Resolution

Baseline Team: Acknowledged.

27

Category Severity Location Status

Logical Error ● Medium CreditFacility.sol Acknowledged

L-01 | getLiquidityForReserves Edge Case Not Handled

Description

When the current price at sqrtPriceA is below the _sqrtPriceL, the getLiquidityForReserves function
will misrepresent the result as spreading the specified _reserves amount across the range from
[sqrtPriceA, _sqrtPriceL] when in fact the position at [_sqrtPriceL, _sqrtPriceU] has no reserves in it.
While currently no usage of the getLiquidityForReserves function would be prone to this bug, any
future use-case is at risk.

Recommendation

Return 0 from getLiquidityForReserves when the sqrtPriceA is less than the _sqrtPriceL.

Resolution

Baseline Team: The issue was resolved in PR#93.

28

Category Severity Location Status

Logical Error ● Low BPOOL.v1.sol: 302 Resolved

https://github.com/0xBaseline/baseline-v2/pull/93

L-02 | Incorrect Comment

Description

In the setTicks function the comment on line 213 states that the function is going to “calculate the
corresponding sqrt prices for the tick boundaries and save them”, however there is no computation
of the sqrt prices in the setTicks function.

Recommendation

Update this comment to reflect what the setTicks function does.

Resolution

Baseline Team: Resolved.

29

Category Severity Location Status

Documentation ● Low BPOOL.v1.sol: 213 Resolved

L-03 | Superfluous Capacity Calculation

Description

In the getCapacityForLiquidity function the capacity is calculated using the Uniswap V3 periphery
getAmount0ForLiquidity function if the sqrtPriceA >= _sqrtPriceL, however if the sqrtPriceA ==
_sqrtPriceL the result is trivially zero.

Recommendation

Do not waste gas to compute the sqrtPriceA == _sqrtPriceL case and alter the condition in the
getCapacityForLiquidity to be a strict greater than comparison of sqrtPriceA > _sqrtPriceL.

Resolution

Baseline Team: The issue was resolved in
PR#files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R3
14.

30

Category Severity Location Status

Optimization ● Low BPOOL.v1.sol: 343 Resolved

https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314
https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314

L-04 | Unused LIQUIDITY_THICKNESS Variable

Description

In the MarketMaking file the LIQ_THICKNESS immutable variable is assigned in the constructor yet
never utilized.

Recommendation

Remove the unnecessary LIQ_THICKNESS variable.

Resolution

Baseline Team: The issue was resolved in
PR#files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R3
14.

31

Category Severity Location Status

Optimization ● Low MarketMaking.sol: 109 Resolved

https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314
https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314

L-05 | Potentially Dangerous liquidityToRemove

Description

In the removeAllFrom function the liquidityToRemove amount is always assigned to the
currentLiquidity which comes from the getLiquidity mapping entry. In the event that the liquidity in
the V3 pool is less than the entry in the mapping this will cause an underflow revert and DoS many
features of the protocol.

While there is currently no identified scenario where the getLiquidity mapping will disagree with the
liquidity of the V3 position, it is safer to only assign the liquidityToRemove to the current liquidity in
the case where liquidityToRemove > currentLiquidity and that liquidity amount is guaranteed to be
deployed.

Recommendation

Consider moving the liquidityToRemove = currentLiquidity assignment inside of the if
(liquidityToRemove > currentLiquidity) case.

Resolution

Baseline Team: The issue was resolved in
PR#files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R3
14.

32

Category Severity Location Status

Best Practices ● Low BPOOL.v1.sol: 219 Resolved

https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314
https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314

L-06 | Lack Of safeTransfer

Description

In the _leverage function, when leveraging the reserve tokens are sent via transfer without checking
the return values. However the reserve token may potentially be a token which chooses to silently
return false upon failure to transfer.

Recommendation

Use safeTransfer to transfer reserve tokens in the _leverage function.

Resolution

Baseline Team: The issue was resolved in commit 062330e.

33

Category Severity Location Status

Best Practices ● Low CreditFacility.sol: 236 Resolved

https://github.com/0xBaseline/baseline-v2/pull/100/commits/062330eb7622eb5013f7a92884a8722099f4abd4

L-07 | Outdated Comment

Description

In the slide function the comment on line 328 mentions that the function “caps the new discovery
liquidity to the old discovery liquidity”, however this is no longer the case.

Recommendation

Remove the outdated comment.

Resolution

Baseline Team: The issue was resolved in
PR#files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R3
14.

34

Category Severity Location Status

Documentation ● Low MarketMaking.sol: 328 Resolved

https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314
https://github.com/0xBaseline/baseline-v2/pull/91/files#diff-3579424c9b33337cc1a4bf4454c2c5a502df76dc22c5110b8767b5f976fee172R312-R314

L-08 | Unused State Variables

Description

MAX_LIQ_PREMIUM and LIQ_THICKNESS are defined as state variables and assigned in the
constructor.

These values should’ve been used while calculating anchor and discovery liquidity. However, they are
never used in any of the contracts.

Recommendation

Ensure that these variables are used when necessary or consider removing them.

Resolution

Baseline Team: The issue was resolved in commit 662962a.

35

Category Severity Location Status

Superfluous Code ● Low MarketMaking.sol: 72, 76 Resolved

https://github.com/0xBaseline/baseline-v2/pull/89/commits/662962a4e4c4c26afdff18329699c37c0be9b3a8

L-09 | Inaccurate Return Value Name

Description

Function _swapExactOut() returns uint256 amountOut, although router.exactOutputSingle actually
returns the amountIn necessary to achieve the exact output.

Recommendation

Change uint256 amountOut to uint256 amountIn

Resolution

Baseline Team: The issue was resolved in commit e9d33fc.

36

Category Severity Location Status

Best Practices ● Low CreditFacility.sol: 344 Resolved

https://github.com/0xBaseline/baseline-v2/pull/89/commits/e9d33fcb2eeda5b895d8270932227fd4f70cb748

L-10 | Repay Credit Delta Does Not Match Reserves Delta

Description

During a repay it is possible for external liquidity to be included in the getLiquidity mapping entry.
This is because on the repay BPOOL.addReservesTo(Range.FLOOR, _repayment); is called which will
store the existing liquidity at the tick range.

Consequently, the invariant that the change in credit after the repay matches the change in the floor
reserves does not hold.

Recommendation

Consider removing this vector by removing floor liquidity and adding it back during repayment.

Resolution

Baseline Team: The issue was resolved in commit e9d33fc.

37

Category Severity Location Status

Documentation ● Low CreditFacility.sol Resolved

https://github.com/0xBaseline/baseline-v2/pull/89/commits/e9d33fcb2eeda5b895d8270932227fd4f70cb748

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

38

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

39

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

